Rachel L. Robinson
St James's University Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rachel L. Robinson.
European Journal of Human Genetics | 2003
Rachel L. Robinson; Martin Anetseder; V Brancadoro; C van Broekhoven; Antonella Carsana; Kathrin Censier; G Fortunato; Thierry Girard; Luc Heytens; P.M. Hopkins; Karin Jurkat-Rott; W Klinger; G Kozak-Ribbens; R Krivosic; N Monnier; Y. Nivoche; D Olthoff; Henrik Rueffert; V Sorrentino; V Tegazzin; C R Mueller
Malignant hyperthermia (MH) is a condition that manifests in susceptible individuals only on exposure to certain anaesthetic agents. Although genetically heterogeneous, mutations in the RYR1 gene (19q13.1) are associated with the majority of reported MH cases. Guidelines for the genetic diagnosis for MH susceptibility have recently been introduced by the European MH Group (EMHG). These are designed to supplement the muscle biopsy testing procedure, the in vitro contracture test (IVCT), which has been the only means of patient screening for the last 30 years and which remains the method for definitive diagnosis in suspected probands. Discordance observed in some families between IVCT phenotype and susceptibility locus genotype could limit the confidence in genetic diagnosis. We have therefore assessed the prevalence of 15 RYR1 mutations currently used in the genetic diagnosis of MH in a sample of over 500 unrelated European MH susceptible individuals and have recorded the frequency of RYR1 genotype/IVCT phenotype discordance. RYR1 mutations were detected in up to ∼30% of families investigated. Phenotype/genotype discordance in a single individual was observed in 10 out of 196 mutation-positive families. In five families a mutation-positive/IVCT-negative individual was observed, and in the other five families a mutation-negative/IVCT-positive individual was observed. These data represent the most comprehensive assessment of RYR1 mutation prevalence and genotype/phenotype correlation analysis and highlight the possible limitations of MH screening methods. The implications for genetic diagnosis are discussed.
BMC Medical Genetics | 2009
Danielle Carpenter; Christopher Ringrose; Vincenzo C. Leo; Andrew P. Morris; Rachel L. Robinson; P. Jane Halsall; P.M. Hopkins; Marie-Anne Shaw
BackgroundMalignant hyperthermia (MH) is an inherited pharmacogenetic disorder of skeletal muscle, characterised by an elevated calcium release from the skeletal muscle sarcoplasmic reticulum. The dihydropyridine receptor (DHPR) plays an essential role in excitation-contraction coupling and calcium homeostasis in skeletal muscle. This study focuses on the gene CACNA1S which encodes the α1 subunit of the DHPR, in order to establish whether CACNA1S plays a major role in MH susceptibility in the UK.MethodsWe investigate the CACNA1S locus in detail in 50 independent MH patients, the largest study to date, to identify novel variants that may predispose to disease and also to characterise the haplotype structure across CACNA1S.ResultsWe present CACNA1S cDNA sequencing data from 50 MH patients in whom RYR1 mutations have been excluded, and subsequent mutation screening analysis. Furthermore we present haplotype analysis of unphased CACNA1S SNPs to (1) assess CACNA1S haplotype frequency differences between susceptible MH cases and a European control group and (2) analyse population-based association via clustering of CACNA1S haplotypes based on disease risk.ConclusionThe study identified a single potentially pathogenic change in CACNA1S (p.Arg174Trp), and highlights that the haplotype structure across CACNA1S is diverse, with a high degree of variability.
BJA: British Journal of Anaesthesia | 2009
Danielle Carpenter; Rachel L. Robinson; Rupert J. Quinnell; Christopher Ringrose; M. Hogg; F. Casson; Patrick Booms; David Iles; P.J. Halsall; Derek S. Steele; Marie-Anne Shaw; P.M. Hopkins
BACKGROUND Malignant hyperthermia (MH) is associated, in the majority of cases, with mutations in RYR1, the gene encoding the skeletal muscle ryanodine receptor. Our primary aim was to assess whether different RYR1 variants are associated with quantitative differences in MH phenotype. METHODS The degree of in vitro pharmacological muscle contracture response and the baseline serum creatine kinase (CK) concentration were used to generate a series of quantitative phenotypes for MH. We then undertook the most extensive RYR1 genotype-phenotype correlation in MH to date using 504 individuals from 204 MH families and 23 RYR1 variants. We also determined the association between a clinical phenotype and both the laboratory phenotype and RYR1 genotype. RESULTS We report a novel correlation between the degree of in vitro pharmacological muscle contracture responses and the onset time of the clinical MH response in index cases (P<0.05). There was also a significant correlation between baseline CK concentration and clinical onset time (P=0.039). The specific RYR1 variant was a significant determinant of the severity of each laboratory phenotype (P<0.0001). CONCLUSIONS The MH phenotype differs significantly with different RYR1 variants. Variants leading to more severe MH phenotype are distributed throughout the gene and tend to lie at relatively conserved sites in the protein. Differences in phenotype severity between RYR1 variants may explain the variability in clinical penetrance of MH during anaesthesia and why some variants have been associated with exercise-induced rhabdomyolysis and heat stroke. They may also inform a mutation screening strategy in cases of idiopathic hyperCKaemia.
Journal of Medical Genetics | 2004
S Shepherd; F.R. Ellis; Jane Halsall; P.M. Hopkins; Rachel L. Robinson
The congenital myopathies are a group of disorders that are difficult to distinguish. Diagnosis is frequently dependent on the result of histological examination of muscle biopsy specimens in conjunction with clinical diagnosis. There is a significant degree of overlap in the clinical features of different congenital myopathies: identification of genetic determinants may therefore aid in establishing a firm diagnosis. Central core disease (CCD) is a rare congenital myopathy. Histologically, using oxidative enzyme stains, it is identified by the abundance of central cores, characterised by localised areas of mitochondrial depletion and sarcomere disorganization exclusively in type 1 skeletal muscle fibres, and extending throughout their length. Cores are often central and unique, but may be eccentric or multiple within one fibre. Affected patients may present with congenital muscle hypotonia, pronounced proximal weakness, delayed motor development, and slightly elevated creatine kinase (CK) levels. In addition, skeletal anomalies such as congenital hip displacement and scoliosis are frequent. Later in life muscle strength may improve, but in rare cases progressive muscle weakness is observed. Respiratory insufficiency is rare.1,2 Overall, the disorder demonstrates significant phenotypic variability; in a study of 13 cases, as many as 40% of patients with histological signs of disease were clinically asymptomatic.3 CCD is predominantly reported as an autosomal dominant trait. However, there is evidence that inheritance may be autosomal recessive in some families,4,5 and sporadic cases have been documented.6,7 It is recognised as the primary disorder associated and allelic with the pharmacogenetic disorder malignant hyperthermia (MH).8 However, characteristic muscle cores have been reported in association with several other myopathies, namely multi-mini core disease (MmD), nemaline myopathy, and hypertrophic cardiomyopathy. All have additional definitive characteristics in their own right, although in some cases the phenotypic boundaries are difficult to assert. MH also shows autosomal …
Human Genetics | 2003
Rachel L. Robinson; P.M. Hopkins; Antonella Carsana; Hermann Gilly; Jane Halsall; Luc Heytens; Gunilla Islander; Karin Jurkat-Rott; Clemens R. Müller; Marie-Anne Shaw
Abstract. Malignant hyperthermia (MH), a potentially lethal disorder of skeletal muscle calcium homeostasis, manifests only on exposure to certain anaesthetic drugs. The mode of inheritance appears to be autosomal dominant with both locus and allelic heterogeneity having been reported. Association analysis of eight MH candidate loci in UK families has indicated that several genes influence susceptibility in individual families, rather than MH simply being a major gene defect. In support of this hypothesis, we present data on a replica analysis of an independent sample of European MH families.
Journal of Medical Genetics | 1998
Rachel L. Robinson; J L Curran; W. J. Hall; P.J. Halsall; P.M. Hopkins; A F Markham; Alistair D. Stewart; S P West; F.R. Ellis
Malignant hyperthermia (MH) is an autosomal dominant genetic condition that presents in susceptible people undergoing general anaesthesia. The clinical disorder is a major cause of anaesthetic morbidity and mortality. The UK Malignant Hyperthermia Group has performed genetic linkage analysis on 20 large, well defined malignant hyperthermia families, using hypervariable markers on chromosome 19q13.1, including the candidate MH gene RYR1, the gene coding for the skeletal muscle ryanodine receptor protein. The results were analysed using LINKAGE to perform two point and multipoint lod scores, then HOMOG to calculate levels of heterogeneity. The results clearly showed genetic heterogeneity between MH families; nine of the families gave results entirely consistent with linkage to the region around RYR1 while the same region was clearly excluded in three families. In the remaining eight MHS families there were single recombinant events between RYR1 and MH susceptibility. HOMOG analysis was of little added benefit in determining the likelihood of linkage to RYR1 in these families. This confirmation of the presence of heterogeneity in the UK MH population, along with the possibility of the presence of two MH genes in some pedigrees, indicates that it would be premature and potentially dangerous to offer diagnosis of MH by DNA based methods at this time.
Muscle & Nerve | 2004
Clare L. Marchant; F. Richard Ellis; P. Jane Halsall; P.M. Hopkins; Rachel L. Robinson
Hypokalemic periodic paralysis (HypoPP) and malignant hyperthermia (MH) are autosomal‐dominant genetically heterogeneous ion channelopathies. MH has been described in patients with HypoPP, suggesting a potential link between these disorders. However, a common genetic determinant has not been described. With the aim of corroborating this association, four candidate genes were screened in two independent HypoPP patients, one of whom was also diagnosed as MH‐susceptible and the other as MH‐normal by the in vitro contracture test (IVCT). An A>G change at nucleotide 7025 was detected in the RYR1 gene in the HypoPP/MH‐susceptible patient. Detection of the same mutation in three independent MH families suggested that 7025A>G represents a novel MH‐susceptibility allele and that MH and HypoPP occurred independently in the case presented. Conclusive evidence in support of the hypothesis that MH and HypoPP are allelic was therefore not obtained. Muscle Nerve 30: 114–117, 2004
Muscle & Nerve | 2009
Danielle Carpenter; Azzam Ismail; Rachel L. Robinson; Christopher Ringrose; Patrick Booms; David Iles; P. Jane Halsall; Derek S. Steele; Marie-Anne Shaw; P.M. Hopkins
In this study we present 3 families with malignant hyperthermia (MH), all of Indian subcontinent descent. One individual from each of these families was fully sequenced for RYR1 and presented with the non‐synonymous change c.11315G>A/p.R3772Q. When present in the homozygous state c.11315*A is associated with myopathic symptoms. Muscle Nerve, 2009
BJA: British Journal of Anaesthesia | 2009
Rachel L. Robinson; Danielle Carpenter; P.J. Halsall; David Iles; Patrick Booms; Derek S. Steele; P.M. Hopkins; Marie-Anne Shaw
BACKGROUND Tissue-specific monoallelic silencing of the RYR1 gene has been proposed as an explanation for variable penetrance of dominant RYR1 mutations in malignant hyperthermia (MH). We examined the hypothesis that monoallelic silencing could explain the inheritance of an MH discordant phenotype in some instances. METHODS We analysed parent-offspring transmission data from MH kindreds to assess whether there was any deviation from the expected autosomal dominant Mendelian inheritance pattern. We also evaluated informative single-nucleotide polymorphism (SNP) genotypes in a cohort of unrelated MH patients using genomic DNA (gDNA, prepared from leucocytes) and coding DNA (cDNA, prepared from skeletal muscle). Finally, we examined the segregation of specific mutations at the gDNA and cDNA level within MH families where positive RYR1 gDNA genotype/normal MH phenotype discordance had been observed. RESULTS In 2113 transmissions from affected parents, there was a consistent parent-of-origin effect (P<0.001) with affected fathers having fewer affected daughters (20%, 95% CI 17-22%) than affected sons (25%, 95% CI 23-26%) or unaffected daughters (27%, 95% CI 25-30%). No discrepancies were observed between the RYR1 SNP genotypes recorded at the gDNA and cDNA levels. In 14 MH negative individuals from 11 discordant families, the familial mutation was detected in skeletal muscle cDNA in all cases. CONCLUSIONS Epigenetic allele silencing may play a role in the inheritance of MH susceptibility, but this is unlikely to involve silencing of RYR1.
Annals of Human Genetics | 2009
Danielle Carpenter; Andrew P. Morris; Rachel L. Robinson; Patrick Booms; David Iles; P.J. Halsall; Derek S. Steele; P.M. Hopkins; Marie-Anne Shaw
This study represents a new approach to characterising patients at risk of malignant hyperthermia (MH) through the use of a recently published method for identifying high‐risk haplotypes in candidate genes. We present analysis based upon the largest standardised and genotyped database of MH patients worldwide. We used unphased RYR1 SNP data directly to (1) assess RYR1 haplotype frequency differences between susceptible cases and control groups and (2) analyse population‐based association via clustering of RYR1 haplotypes based on disease risk. Our results show a significant difference in RYR1 haplotype frequency between susceptible cases and UK Caucasian population controls. Furthermore we identify a high‐risk cluster of haplotypes that is associated with the commonest UK MH mutation p.G2434R/c.7300G>A. These results demonstrate the applicability of this new and practical method for population based association analysis.