Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel L. Self is active.

Publication


Featured researches published by Rachel L. Self.


Brain Research | 2002

Neurotoxic effects of the human immunodeficiency virus type-1 transcription factor Tat require function of a polyamine sensitive-site on the N-methyl-d-aspartate receptor

Mark A. Prendergast; D.Trent Rogers; Patrick J. Mulholland; John M. Littleton; Lincoln H. Wilkins; Rachel L. Self; Avindra Nath

Human immunodeficiency virus type-I (HIV-1) infection is often associated with neuronal loss in cortical and subcortical regions that may manifest as motor dysfunction and dementia. The function of the HIV-1 transcription protein Tat and subsequent activation of N-methyl-D-aspartate receptors (NMDAr) have been implicated in this form of neurodegeneration. However, it is unclear if Tat interacts directly with the NMDAr and the role of specific NMDAr subunit composition in mediating effects of Tat is also unclear. The present studies examined the ability of HIV-1 Tat1-72 protein (10 pM-1.0 microM) to displace [3H]MK-801 binding and to attenuate spermidine-induced potentiation of this binding in rat brain homogenate comprised of cerebellum, hippocampus, and cerebral cortex. The role of NMDAr polyamine-site function in the neurotoxic effects of Tat was determined using organotypic hippocampal slice cultures. Binding of [3H]MK-801 in adult rat brain homogenate was not reduced by Tat at concentrations below 1 microM. Tat potently inhibited the potentiation of [3H]MK-801 binding produced by co-exposure of membranes to the NMDAr co-agonist spermidine (IC(50)=3.74 nM). In hippocampal explants, Tat produced neurotoxicity in the CA3 and CA1 pyramidal cell layers, as well as in the dentate gyrus, that was significantly reduced by co-exposure to MK-801 (20 microM) and the NMDAr polyamine-site antagonist arcaine (10 microM). Exposure to the HIV-1 Tat deletion mutant (Tatdelta31-61) did not produce neurotoxicity in hippocampal explants. These data suggest that the neurotoxic effects of HIV-1 Tat are mediated, in part, by direct interactions with a polyamine-sensitive site on the NMDAr that positively modulates the function of this receptor.


Neuroscience | 2007

Microtubule-associated targets in chlorpyrifos oxon hippocampal neurotoxicity.

Mark A. Prendergast; Rachel L. Self; Katherine J. Smith; L. Ghayoumi; M.M. Mullins; Tracy R. Butler; Jerry J. Buccafusco; Debra A. Gearhart; Alvin V. Terry

Prolonged exposure to organophosphate (OP) pesticides may produce cognitive deficits reflective of hippocampal injury in both humans and rodents. Recent work has indicated that microtubule trafficking is also adversely affected by exposure to the OP pesticide chlorpyrifos, suggesting a novel mode of OP-induced neurotoxicity. The present studies examined effects of prolonged exposure to chlorpyrifos oxon (CPO) on acetylcholinesterase (AChE) activity, immunoreactivity (IR) of microtubule-associated proteins, neuronal injury, and tubulin polymerization using in vitro organotypic slice cultures of rat hippocampus and bovine tubulin. Cultures were exposed to CPO (0.1-10 microM) in cell culture medium for 1-7 days, a regimen producing progressive reductions in AChE activity of 15-60%. Cytotoxicity (somatic uptake of the non-vital marker propidium iodide), as well as IR of alpha-tubulin and microtubule-associated protein-2 (a/b) [MAP-2], was assessed 1, 3, and 7 days after the start of CPO exposure. As early as 24 h after the start of exposure, CPO-induced deficits in MAP-2 IR were evident and progressive in each region of slice cultures at concentrations as low as 0.1 microM. CPO exposure did not alter alpha-tubulin IR at any time point. Concentration-dependent injury in the cornu ammonis (CA)1 pyramidal cell layer and to a lesser extent, CA3 and dentate cells, was evident 3 days after the start of CPO exposure (>or=0.1 microM) and was greatest after 7 days. Tubulin polymerization assays indicated that CPO (>or=0.1 microM) markedly inhibited the polymerization of purified tubulin and MAP-rich tubulin, though effects on MAP-rich tubulin were more pronounced. These data suggest that exposure to CPO produces a progressive decrease in neuronal viability that may be associated with impaired microtubule synthesis and/or function.


Brain Research | 2004

The human immunodeficiency virus type-1 transcription factor Tat produces elevations in intracellular Ca2+ that require function of an N-methyl-D-aspartate receptor polyamine-sensitive site.

Rachel L. Self; Patrick J. Mulholland; Avindra Nath; Barton R. Harris; Mark A. Prendergast

Human immunodeficiency virus type-1 (HIV-1) infection is commonly associated with neuronal loss, as well as, cognitive and motor deficits collectively termed HIV-1-associated dementia (HAD). Function of the HIV-1 transcription factor Tat, activation of N-methyl-D-aspartate (NMDA)-type glutamate receptors, and subsequent rapid rises in free intracellular Ca2+ have been implicated in the development of this neurological disorder. However, the role of specific NMDA receptor modulatory sites in mediating effects of Tat has not been examined. The present studies examined the ability of two variants of Tat protein (1-100 nM), Tat 1-72 and Tat 1-86, to produce rapid rises in intracellular Ca2+ in organotypic slice cultures of rat hippocampus. Further, these studies evaluated the role of an NMDA receptor polyamine-sensitive site in mediating Tat-induced elevations in intracellular Ca2+. Brief exposure (10 min) to each variant of Tat protein (>1 nM) markedly increased levels of intracellular Ca2+ in each region of the hippocampus to as much as 145% of controls. In contrast, exposure of cultures to a deletion mutant of Tat protein devoid of amino acids 31-61 (Tat Delta31-61) did not produce changes in intracellular Ca2+ levels. Most significantly, exposure to the NMDA receptor antagonist dizocilpine (MK801 20 microM) and the polyamine site antagonist arcaine (10 microM) significantly attenuated increases in intracellular Ca2+ levels when co-administered with either the Tat 1-72 or Tat 1-86 amino acid variant of Tat. Thus, exposure of the hippocampus to Tat produces increases in intracellular Ca2+ levels that require function of an NMDA receptor polyamine-sensitive site and this may well contribute to the neurotoxic effects of HIV-1 infection. Polyamine-sensitive portions of this receptor may then represent novel therapeutic targets in the pharmacologic treatment of HAD-related neurotoxicity.


Neuroscience | 2010

Selective vulnerability of hippocampal cornu ammonis 1 pyramidal cells to excitotoxic insult is associated with the expression of polyamine-sensitive N-methyl-D-asparate-type glutamate receptors

Tracy R. Butler; Rachel L. Self; Katherine J. Smith; Lynda Sharrett-Field; Jennifer N. Berry; John M. Littleton; James R. Pauly; Patrick J. Mulholland; Mark A. Prendergast

Excess glutamate release and stimulation of post-synaptic glutamatergic receptors have been implicated in the pathophysiology of many neurological diseases. The hippocampus, and the pyramidal cell layer of the cornu ammonus 1 (CA1) region in particular, has been noted for its selective sensitivity to excitotoxic insults. The current studies examined the role of N-methyl-D-aspartate (NMDA) receptor subunit composition and sensitivity to stimulatory effects of the polyamine spermidine, an allosteric modulator of NMDA NR2 subunit activity, in hippocampal CA1 region sensitivity to excitotoxic insult. Organotypic hippocampal slice cultures of 8 day-old neonatal rat were obtained and maintained in vitro for 5 days. At this time, immunohistochemical analysis of mature neuron density (NeuN); microtubule associated protein-2(a,b) density (MAP-2); and NMDA receptor NR1 and NR2B subunit density in the primary cell layers of the dentate gyrus (DG), CA3, and CA1 regions, was conducted. Further, autoradiographic analysis of NMDA receptor distribution and density (i.e. [(125)I]MK-801 binding) and spermidine (100 microM)-potentiated [(125)I]MK-801 binding in the primary cell layers of these regions was examined. A final series of studies examined effects of prolonged exposure to NMDA (0.1-10 microM) on neurodegeneration in the primary cell layers of the DG, CA3, and CA1 regions, in the absence and presence of spermidine (100 microM) or ifenprodil (100 microM), an allosteric inhibitor of NR2B polypeptide subunit activity. The pyramidal cell layer of the CA1 region demonstrated significantly greater density of mature neurons, MAP-2, NR1 and NR2B subunits, and [(125)I]MK-801 binding than the CA3 region or DG. Twenty-four hour NMDA (10 microM) exposure produced marked neurodegeneration (approximately 350% of control cultures) in the CA1 pyramidal cell region that was significantly reduced by co-exposure to ifenprodil or DL-2-Amino-5-phosphonopentanoic acid (APV). The addition of spermidine significantly potentiated [(125)I]MK-801 binding and neurodegeneration induced by exposure to a non-toxic concentration of NMDA, exclusively in the CA1 region. This neurodegeneration was markedly reduced with co-exposure to ifenprodil. These data suggest that selective sensitivity of the CA1 region to excitotoxic stimuli may be attributable to the density of mature neurons expressing polyamine-sensitive NR2B polypeptide subunits.


Alcoholism: Clinical and Experimental Research | 2005

Corticosterone Increases Damage and Cytosolic Calcium Accumulation Associated With Ethanol Withdrawal in Rat Hippocampal Slice Cultures

Patrick J. Mulholland; Rachel L. Self; Barton R. Harris; Hilary J. Little; John M. Littleton; Mark A. Prendergast

BACKGROUND Evidence suggests that stress hormones (i.e., glucocorticoids) may be increased during acute or chronic consumption of ethanol and during withdrawal from ethanol consumption, effects that may contribute to the development of cognitive impairment. The goal of the current studies was to examine the hypothesis that increased glucocorticoid levels in conjunction with ethanol exposure and withdrawal may cause hippocampal damage. METHODS Organotypic hippocampal slice cultures were exposed to 50 mM ethanol for 10 days and withdrawn for 1 day. After withdrawal, cytotoxicity and cytosolic Ca2+ accumulation were measured using the nucleic acid stain propidium iodide and Calcium Orange, AM, respectively. Cultures were also treated with nontoxic concentrations of corticosterone (0.001-1 microM) during ethanol exposure and withdrawal or only during withdrawal. Additional cultures were coexposed to corticosterone and RU486 (0.1-10.0 microM), spironolactone (0.1-10.0 microM), or MK-801 (20 microM) during ethanol exposure and/or withdrawal. RESULTS Ethanol withdrawal did not increase propidium iodide fluorescence and cytosolic Ca2+ levels. However, significant increases in propidium iodide fluorescence and in cytosolic Ca2+ accumulation were observed in cultures when corticosterone (> or = 100 nM) was exposed during ethanol treatment and/or withdrawal. These effects of corticosterone on ethanol withdrawal were attenuated by RU486 and MK-801 but not by spironolactone coexposure. CONCLUSIONS This report demonstrated that corticosterone exposure during ethanol treatment and/or withdrawal resulted in significant hippocampal damage, possibly via activation of glucocorticoid receptors and enhancement of the glutamatergic cascade. The findings from these studies suggest that glucocorticoids contribute to the neuropathological consequences of alcohol dependence in humans.


Neuroscience | 2005

Thiamine deficiency in the pathogenesis of chronic ethanol-associated cerebellar damage in vitro

Patrick J. Mulholland; Rachel L. Self; T.D. Stepanyan; Hilary J. Little; John M. Littleton; Mark A. Prendergast

Nutritional deficiencies associated with long-term ethanol consumption may cause neuronal damage in ethanol-dependent individuals. Thiamine deficiency, in particular, is thought to contribute to ethanol-associated cerebellar degeneration, although damage may occur in adequately nourished alcoholics. Thus, the present study examined the effects of thiamine depletion and ethanol exposure on cytotoxicity in rat cerebellum. Organotypic cerebellar slice cultures were treated starting at 25 days in vitro with 100 mM ethanol for 11 days or 10 days followed by a 24-h withdrawal period. This exposure paradigm has previously been shown in hippocampal slice cultures to result in spontaneous cytotoxicity upon ethanol withdrawal. Additional cerebellar cultures were exposed to the thiamine depleting agent pyrithiamine (10-500 microM) for 10 or 11 days, some in the presence of ethanol exposure or withdrawal. Other cultures were co-exposed to thiamine (1-100 microM), 500 microM pyrithiamine, and ethanol for 10 or 11 days. The results demonstrated that neither 11-day ethanol treatment nor withdrawal from 10-day exposure significantly increased cerebellar cytotoxicity, as measured by propidium iodide fluorescence. The 11-day treatment with 100 or 500 microM pyrithiamine significantly increased propidium iodide fluorescence approximately 21% above levels observed in control tissue. Cultures treated with both ethanol (11 days or 10 days plus withdrawal) and 500 microM pyrithiamine displayed a marked increase in cytotoxicity approximately 60-90% above levels observed in control cultures. Pyrithiamine and ethanol-induced cytotoxicity was prevented in cultures co-exposed to thiamine (10-100 microM) for the duration of pyrithiamine treatment. Findings from this report suggest that the cerebellum may be more sensitive to the toxic effects of thiamine deficiency, as compared with alcohol withdrawal, associated with alcohol dependence.


Alcoholism: Clinical and Experimental Research | 2004

Cytotoxic effects of exposure to the human immunodeficiency virus type 1 protein Tat in the hippocampus are enhanced by prior ethanol treatment.

Rachel L. Self; Patrick J. Mulholland; Barton R. Harris; Avindra Nath; Mark A. Prendergast

BACKGROUND Long-term ethanol exposure leads to increases in the expression and/or sensitivity of NMDA-type glutamate receptors, effects that may contribute to the development of cytotoxicity in the brain. The human immunodeficiency virus 1 (HIV-1) transcription factor Tat is one of many viral proteins that may contribute to the development of HIV-associated dementia (HAD) by indirectly or directly promoting excess function of NMDA receptors. Thus, these studies examined the hypothesis that long-term ethanol pre-exposure would sensitize the hippocampus to Tat-induced cytotoxicity in an NMDA receptor-dependent manner. METHODS Organotypic slice cultures of rat hippocampus were exposed to a recombinant 86-amino acid form of Tat (Tat1-86) or a Tat deletion mutant devoid of amino acids 31 to 61 (TatDelta31-61; 0.1-100 nM) for 24 hr alone or during withdrawal from 10 days of ethanol exposure (50 mM in culture medium). Additional cultures were exposed to NMDA (5 microM) or the NMDA receptor channel blocker MK-801 (1 microM) during these treatments. Cellular injury in the CA1, CA3, and dentate gyrus regions of slice cultures was assessed by microscopy of propidium iodide fluorescence. RESULTS Twenty-four hours of withdrawal from ethanol exposure did not produce overt cellular injury in any region of slice cultures. However, NMDA-induced toxicity was markedly increased in ethanol-pre-exposed cultures, an effect prevented by MK-801 (1 microM) coexposure. Treatment of cultures with Tat1-86 alone (> or = 0.1 nM) produced modest toxicity in each region of hippocampal cultures that was also blocked by MK-801 coexposure. In contrast, exposure to TatDelta31-61 did not alter propidium iodide fluorescence. Exposure of cultures to Tat1-86 (> or = 0.1 nM) during ethanol withdrawal resulted in a marked potentiation of Tats toxic effects in each region of slice cultures, particularly the CA1 region. This potentiation of Tat neurotoxicity was significantly attenuated by coexposure of cultures to MK-801 (1 microM). CONCLUSIONS These results indicate that long-term ethanol exposure sensitizes the hippocampus to the cytotoxic effects of Tat in an NMDA receptor-dependent manner. This may suggest that HIV-1-positive individuals who are alcohol dependent possess a heightened risk for the development of HAD. Furthermore, the NMDA receptor, particularly allosteric modulatory sites such as polyamine-sensitive sites, may be a therapeutic target to be investigated in the treatment of HAD.


Alcoholism: Clinical and Experimental Research | 2008

Sex Differences in the Neurotoxic Effects of Adenosine A1 Receptor Antagonism During Ethanol Withdrawal: Reversal With an A1 Receptor Agonist or an NMDA Receptor Antagonist

Tracy R. Butler; Katherine J. Smith; Rachel L. Self; B. Blair Braden; Mark A. Prendergast

BACKGROUND Neuronal adaptations that occur during chronic ethanol (EtOH) exposure have been observed to sensitize the brain to excitotoxic insult during withdrawal. The adenosine receptor system warrants further examination in this regard, as recent evidence has implicated adenosine receptor involvement in the behavioral effects of both EtOH exposure and withdrawal. METHODS The current studies examined effects of adenosine A(1) receptor manipulation on neuronal injury in EtOH-naive and EtOH-withdrawn male and female rat hippocampal slice cultures. EtOH-naive and EtOH pretreated (43.1 to 26.9 mM from days 5 to 15 DIV) cultures were exposed to the A(1) receptor agonist 2-Chloro-N(6)-cyclopentyladenosine (CCPA; 10 nM), the A(1) receptor antagonist 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX;10 nM), or the N-methyl-D-aspartate (NMDA) receptor antagonist D,L,-2-amino-5-phosphovalerate (APV; 20 microM) at 15 days in vitro (DIV). Cytotoxicity was measured in the primary neuronal layers of the dentate gyrus, CA3 and CA1 hippocampal regions by quantification of propidium iodide (PI) fluorescence after 24 hours. Immunohistochemical analysis of A(1) receptor abundance was conducted in EtOH-naive and EtOH pretreated slice cultures at 15 DIV. RESULTS Twenty-four hour exposure to DPCPX in EtOH-naive slice cultures did not produced neurotoxicity in any region of slice cultures. Though withdrawal from 10 day EtOH exposure produced no toxicity in either male or female slice cultures, exposure to DPCPX during 24 hours of EtOH withdrawal produced a marked increase in PI uptake in all hippocampal culture subregions in female cultures (to approximately 160% of control values). A significant effect for sex was observed in the CA1 region such that toxicity in females cultures exposed to the A(1) antagonist during withdrawal was greater than that observed in male cultures. These effects of DPCPX in EtOH withdrawn female and male slices were prevented by co-exposure to either the A(1) agonist CCPA or the NMDA receptor antagonist APV for 24 hours. No differences in the abundance of A(1) receptors were observed in male and female EtOH-naive or EtOH pretreated cultures. CONCLUSIONS The current findings suggest that the female hippocampus possesses an innate sensitivity to effects of EtOH exposure and withdrawal on neuronal excitability that is independent of hormonal influences. Further, this sex difference is not related to effects of EtOH exposure on A(1) receptor abundance, but likely reflects increased NMDA receptor-mediated signaling downstream of A(1) inhibition in females.


Neuroscience | 2004

(−)-nicotine ameliorates corticosterone's potentiation of N-methyl-d-aspartate receptor-mediated cornu ammonis 1 toxicity

Patrick J. Mulholland; Rachel L. Self; Barton R. Harris; John M. Littleton; Mark A. Prendergast

Hypercortisolemia, long-term exposure of the brain to high concentrations of stress hormones (i.e. cortisol), may occur in patients suffering from depression, alcoholism, and other disorders. This has been suggested to produce neuropathological effects, in part, via increased function or sensitivity of N-methyl-d-aspartate (NMDA)-type glutamate receptors. Given that cigarette smoking is highly prevalent in some of these patient groups and nicotine has been shown to reduce toxic consequences of NMDA receptor function, it may be suggested that nicotine intake may attenuate the neurotoxic effects of hypercortisolemia. To investigate this possibility, organotypic hippocampal slice cultures derived from rat were pre-treated with corticosterone (0.001-1 microM) alone or in combination with selective glucocorticoid receptor antagonists for 72-h prior to a brief (1-h) NMDA exposure (5 microM). Pre-treatment with corticosterone (0.001-1 microM) alone did not cause hippocampal damage, while NMDA exposure produced significant cellular damage in the cornu ammonis (CA)1 subregion. No significant damage was observed in the dentate gyrus or CA3 regions following NMDA exposure. Pre-treatment of cultures with corticosterone (0.1-1 microM) markedly exacerbated NMDA-induced CA1 and dentate gyrus region damage. This effect in the CA1 region was prevented by co-administration of the glucocorticoid receptor antagonist RU486 (>or=1 microM), but not spironolactone (1-10 microM), a mineralocorticoid receptor antagonist. In a second series of studies, both acute and pre-exposure of cultures to (-)-nicotine (1-10 microM) significantly reduced NMDA toxicity in the CA1 region. Co-administration of cultures to (-)-nicotine (1-10 microM) with 100 nM corticosterone prevented corticosterones exacerbation of subsequent CA1 insult. This protective effect of (-)-nicotine was not altered by co-exposure of cultures to 10 microM dihydro-beta-erythroidine but was blocked by co-exposure to 100 nM methyllycaconitine, suggesting the involvement of nicotinic acetylcholine receptors possessing the alpha7* subunit. The present studies suggest a role for hypercortisolemia in sensitizing the hippocampal NMDA receptor system to pathological activation and indicate that prolonged nicotine exposure attenuates this sensitization. Thus, it is possible that one consequence of heavy smoking in those suffering from hypercortisolemia may be a reduction of neuronal injury and sparing of cellular function.


Neuroscience | 2009

Intra-cornu ammonis 1 administration of the human immunodeficiency virus-1 protein trans-activator of transcription exacerbates the ethanol withdrawal syndrome in rodents and activates N-methyl-d-aspartate glutamate receptors to produce persisting spatial learning deficits

Rachel L. Self; Katherine J. Smith; Tracy R. Butler; James R. Pauly; Mark A. Prendergast

Human immunodeficiency virus-1 (HIV-1) infection may produce neurological deficits, such as cognitive decline, that may be worsened by concurrent ethanol (EtOH) abuse. Among the many biochemical cascades likely mediating HIV-1-associated neuronal injury is enhancement of N-methyl-d-aspartate (NMDA) receptor function and progression to excitotoxicity, an effect that may be directly or indirectly related to accumulation in brain of the HIV-1 trans-activator of transcription (Tat) factor. The present studies were designed to examine the hypothesis that binge-like EtOH pre-exposure would enhance effects of Tat on NMDA receptor function. These studies employed a modified in vivo binge EtOH exposure regimen designed to produce peak blood EtOH levels (BEL) of <200 mg/dl in adult male rats and were designed to examine effects of intra-hippocampal injection of Tat (0.5 microl/500 pM/2 min) on EtOH withdrawal-related behavior, spatial learning, and histological measures. Unilateral cannulae were implanted into the cornu ammonis 1 (CA1) pyramidal cell layer of animals prior to beginning a 4-day binge EtOH regimen. EtOH was administered via intragastric intubation ( approximately 3.0-5.0 g/kg) with dose determined by behavioral ratings of intoxication daily for 4 days (at 08:00, 16:00, and 24:00 h). EtOH withdrawal behaviors were monitored 12 h after the last administration of EtOH. Morris water maze learning was assessed during the following 4 days, at which times brains were harvested for autoradiographic measurement of NMDA receptor density and neuroinflammation. Maximal BELs of 187.69 mg/dl were observed 60 min after EtOH administration on day 2 of the regimen. In contrast, peak BELs of approximately 100 mg/dl were observed 60 min after EtOH administration on day 4 of the regimen, suggesting development of metabolic tolerance. Significant behavioral abnormalities were observed in EtOH withdrawn animals, including tremor and seizures. Intra-CA1 region injection of Tat significantly potentiated EtOH withdrawal behavioral abnormalities, an effect that was reduced by MK-801 pre-exposure. While EtOH withdrawn animals showed learning similar to control animals, EtOH withdrawn animals that received intra-CA1 Tat injection demonstrated persisting deficits in spatial learning on days 3 and 4 of training, effects that were markedly reduced by administration of the competitive NMDA receptor antagonist MK-801 30 min prior to Tat injection. No changes in [(3)H]MK-801 binding were observed. Binding density of [(3)H]PK11195, a ligand for peripheral benzodiazepine receptors expressed on activated microglia, was elevated proximal to cannula tracks in all animals, but was not altered by EtOH or Tat exposure. These findings suggest that EtOH abuse and/or dependence in HIV-positive individuals may promote HIV-1-associated cognitive deficits by altering NMDA receptor function in the absence of microglial activation or neuroinflammation.

Collaboration


Dive into the Rachel L. Self's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Avindra Nath

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge