Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel L. Simister is active.

Publication


Featured researches published by Rachel L. Simister.


The ISME Journal | 2013

Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress.

Lu Fan; Michael Liu; Rachel L. Simister; Nicole S. Webster; Torsten Thomas

Large-scale mortality of marine invertebrates is a major global concern for ocean ecosystems and many sessile, reef-building animals, such as sponges and corals, are experiencing significant declines through temperature-induced disease and bleaching. The health and survival of marine invertebrates is often dependent on intimate symbiotic associations with complex microbial communities, yet we have a very limited understanding of the detailed biology and ecology of both the host and the symbiont community in response to environmental stressors, such as elevated seawater temperatures. Here, we use the ecologically important sponge Rhopaloeides odorabile as a model to explore the changes in symbiosis during the development of temperature-induced necrosis. Expression profiling of the sponge host was examined in conjunction with the phylogenetic and functional structure and the expression profile of the symbiont community. Elevated temperature causes an immediate stress response in both the host and symbiont community, including reduced expression of functions that mediate their partnership. Disruption to nutritional interdependence and molecular interactions during early heat stress further destabilizes the holobiont, ultimately leading to the loss of archetypal sponge symbionts and the introduction of new microorganisms that have functional and expression profiles consistent with a scavenging lifestyle, a lack virulence functions and a high growth rate. Previous models have postulated various mechanisms of mortality and disease in marine invertebrates. Our study suggests that interruption of symbiotic interactions is a major determinant for mortality in marine sessile invertebrates. High symbiont specialization and low functional redundancy, thus make these holobionts extremely vulnerable to environmental perturbations, including climate change.


The ISME Journal | 2013

'Sponge-specific' bacteria are widespread (but rare) in diverse marine environments.

Michael W. Taylor; Peter Tsai; Rachel L. Simister; Peter Deines; Emmanuelle S. Botté; Gavin Ericson; Susanne Schmitt; Nicole S. Webster

Numerous studies have reported the existence of sponge-specific 16S ribosomal RNA (rRNA) gene sequence clusters, representing bacteria found in sponges but not detected in other environments, such as seawater. The advent of deep-sequencing technologies allows us to examine the rare microbial biosphere in order to establish whether these bacteria are truly sponge specific, or are more widely distributed but only at abundances below the detection limit of conventional molecular approaches. We screened >12 million publicly available 16S rRNA gene pyrotags derived from 649 seawater, sediment, hydrothermal vent and coral samples from temperate, tropical and polar regions. We detected 77 of the 173 previously described sponge-specific clusters in seawater or other non-sponge samples, albeit generally at extremely low abundances. Sequences representing the candidate phylum ‘Poribacteria’, previously thought to be largely restricted to sponges, were recovered from 46 (out of 411) seawater and 41 (out of 129) sediment samples. While the presence of an organism does not imply that it is active in situ, our results do suggest that many ‘sponge-specific’ bacteria occur more widely outside of sponge hosts than previously thought.


Environmental Microbiology | 2012

Thermal stress responses in the bacterial biosphere of the Great Barrier Reef sponge, Rhopaloeides odorabile.

Rachel L. Simister; Michael W. Taylor; Peter Tsai; Lu Fan; Timothy J. C. Bruxner; Mark L Crowe; Nicole S. Webster

Marine sponges are diverse, abundant and provide a crucial coupling point between benthic and pelagic habitats due to their high filtration rates. They also harbour extensive microbial communities, with many microbial phylotypes found exclusively in sponge hosts and not in the seawater or surrounding environment, i.e. so-called sponge-specific clusters (SCs) or sponge- and coral-specific clusters (SCCs). We employed DNA (16S rRNA gene) and RNA (16S rRNA)-based amplicon pyrosequencing to investigate the effects of sublethal thermal stress on the bacterial biosphere of the Great Barrier Reef sponge Rhopaloeides odorabile. A total of 8381 operational taxonomic units (OTUs) (97% sequence similarity) were identified, affiliated with 32 bacterial phyla from seawater samples, 23 bacterial phyla from sponge DNA extracts and 18 bacterial phyla from sponge RNA extracts. Sublethal thermal stress (31°C) had no effect on the present and/or active portions of the R. odorabile bacterial community but a shift in the bacterial assemblage was observed in necrotic sponges. Over two-thirds of DNA and RNA sequences could be assigned to previously defined SCs/SCCs in healthy sponges whereas only 12% of reads from necrotic sponges could be assigned to SCs/SCCs. A rapid decline in host health over a 1°C temperature increment suggests that sponges such as R. odorabile may be highly vulnerable to the effects of global climate change.


Frontiers in Microbiology | 2013

Same, same but different: symbiotic bacterial associations in GBR sponges

Nicole S. Webster; Heidi M. Luter; Rochelle M. Soo; Emanuelle S. Botté; Rachel L. Simister; Dave Abdo; Steve W Whalan

Symbioses in marine sponges involve diverse consortia of microorganisms that contribute to the health and ecology of their hosts. The microbial communities of 13 taxonomically diverse Great Barrier Reef (GBR) sponge species were assessed by DGGE and 16S rRNA gene sequencing to determine intra and inter species variation in bacterial symbiont composition. Microbial profiling revealed communities that were largely conserved within different individuals of each species with intra species similarity ranging from 65–100%. 16S rRNA gene sequencing revealed that the communities were dominated by Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, Nitrospira, and Cyanobacteria. Sponge-associated microbes were also highly host-specific with no operational taxonomic units (OTUs) common to all species and the most ubiquitous OTU found in only 5 of the 13 sponge species. In total, 91% of the OTUs were restricted to a single sponge species. However, GBR sponge microbes were more closely related to other sponge-derived bacteria than they were to environmental communities with sequences falling within 50 of the 173 previously defined sponge-(or sponge-coral) specific sequence clusters (SC). These SC spanned the Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmatimonadetes, Nitrospira, and the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum. The number of sequences assigned to these sponge-specific clusters across all species ranged from 0 to 92%. No relationship between host phylogeny and symbiont communities were observed across the different sponge orders, although the highest level of similarity was detected in two closely related Xestospongia species. This study identifies the core microbial inhabitants in a range of GBR sponges thereby providing the basis for future studies on sponge symbiotic function and research aiming to predict how sponge holobionts will respond to environmental perturbation.


PLOS ONE | 2012

Sponge-microbe associations survive high nutrients and temperatures.

Rachel L. Simister; Michael W. Taylor; Peter Tsai; Nicole S. Webster

Coral reefs are under considerable pressure from global stressors such as elevated sea surface temperature and ocean acidification, as well as local factors including eutrophication and poor water quality. Marine sponges are diverse, abundant and ecologically important components of coral reefs in both coastal and offshore environments. Due to their exceptionally high filtration rates, sponges also form a crucial coupling point between benthic and pelagic habitats. Sponges harbor extensive microbial communities, with many microbial phylotypes found exclusively in sponges and thought to contribute to the health and survival of their hosts. Manipulative experiments were undertaken to ascertain the impact of elevated nutrients and seawater temperature on health and microbial community dynamics in the Great Barrier Reef sponge Rhopaloeides odorabile. R. odorabile exposed to elevated nutrient levels including 10 µmol/L total nitrogen at 31°C appeared visually similar to those maintained under ambient seawater conditions after 7 days. The symbiotic microbial community, analyzed by 16S rRNA gene pyrotag sequencing, was highly conserved for the duration of the experiment at both phylum and operational taxonomic unit (OTU) (97% sequence similarity) levels with 19 bacterial phyla and 1743 OTUs identified across all samples. Additionally, elevated nutrients and temperatures did not alter the archaeal associations in R. odorabile, with sequencing of 16S rRNA gene libraries revealing similar Thaumarchaeota diversity and denaturing gradient gel electrophoresis (DGGE) revealing consistent amoA gene patterns, across all experimental treatments. A conserved eukaryotic community was also identified across all nutrient and temperature treatments by DGGE. The highly stable microbial associations indicate that R. odorabile symbionts are capable of withstanding short-term exposure to elevated nutrient concentrations and sub-lethal temperatures.


FEMS Microbiology Ecology | 2013

Temporal molecular and isotopic analysis of active bacterial communities in two New Zealand sponges

Rachel L. Simister; Michael W. Taylor; Karyne M. Rogers; Peter J. Schupp; Peter Deines

The characterization of changes in microbial communities is an essential step towards a better understanding of host-microbe associations. It is well established that sponges (phylum Porifera) harbour a diverse and abundant microbial community, but it is not known whether these microbial communities change over time. Here, we followed two sponge species (Ancorina alata and Tethya stolonifera) over a 2-year sampling period using RNA (16S rRNA)-based amplicon pyrosequencing and bulk stable isotope analysis (δ(13) C and δ(15)N). A total of 4468 unique operational taxonomic units (OTUs) was identified, which were affiliated with 26 bacterial phyla. Bacterial communities of both sponge species were remarkably stable throughout the monitoring period, driven by a small number of OTUs that dominated their respective communities. Variability of sponge-associated bacterial communities was driven by OTUs that were low in abundance or transient over time. Stable isotope analysis provided evidence of both bacteria- and host-derived nutrients and their variability throughout the season. While δ(15) N values were similar, significant differences were found in δ(13) C of sponge tissue, indicative of a varying reliance on particulate organic matter as a carbon source. Further temporal studies, such as those undertaken here, will be highly valuable to identify which members of a sponge bacterial community are truly symbiotic in nature.


PeerJ | 2016

In four shallow and mesophotic tropical reef sponges from Guam the microbial community largely depends on host identity

Georg Steinert; Michael W. Taylor; Peter Deines; Rachel L. Simister; Nicole J. de Voogd; Michael Hoggard; Peter J. Schupp

Sponges (phylum Porifera) are important members of almost all aquatic ecosystems, and are renowned for hosting often dense and diverse microbial communities. While the specificity of the sponge microbiota seems to be closely related to host phylogeny, the environmental factors that could shape differences within local sponge-specific communities remain less understood. On tropical coral reefs, sponge habitats can span from shallow areas to deeper, mesophotic sites. These habitats differ in terms of environmental factors such as light, temperature, and food availability, as well as anthropogenic impact. In order to study the host specificity and potential influence of varying habitats on the sponge microbiota within a local area, four tropical reef sponges, Rhabdastrella globostellata, Callyspongia sp., Rhaphoxya sp., and Acanthella cavernosa, were collected from exposed shallow reef slopes and a deep reef drop-off. Based on 16S rRNA gene pyrosequencing profiles, beta diversity analyses revealed that each sponge species possessed a specific microbiota that was significantly different to those of the other species and exhibited attributes that are characteristic of high- and/or low-microbial-abundance sponges. These findings emphasize the influence of host identity on the associated microbiota. Dominant sponge- and seawater-associated bacterial phyla were Chloroflexi, Cyanobacteria, and Proteobacteria. Comparison of individual sponge taxa and seawater samples between shallow and deep reef sites revealed no significant variation in alpha diversity estimates, while differences in microbial beta diversity (variation in community composition) were significant for Callyspongia sp. sponges and seawater samples. Overall, the sponge-associated microbiota is significantly shaped by host identity across all samples, while the effect of habitat differentiation seems to be less predominant in tropical reef sponges.


Marine Pollution Bulletin | 2015

Degradation of oil by fungi isolated from Gulf of Mexico beaches

Rachel L. Simister; Carolyn M. Poutasse ; Alana M. Thurston; Jen L. Reeve ; Miranda C. Baker ; Helen K. White

Fungi of the Ascomycota phylum were isolated from oil-soaked sand patties collected from beaches following the Deepwater Horizon oil spill. To examine their ability to degrade oil, fungal isolates were grown on oiled quartz at 20°C, 30°C and 40°C. Consistent trends in oil degradation were not related to fungal species or temperature and all isolates degraded variable quantities of oil (32-65%). Fungal isolates preferentially degraded short (<C18; 90-99%) as opposed to long (C19-C36; 7-87%) chain n-alkanes and straight chain C17- and C18-n-alkanes (91-99%) compared to their branched counterparts, pristane and phytane (70-98%). Polycyclic aromatic hydrocarbon (PAH) compounds were also degraded by the fungal isolates (42-84% total degraded), with a preference for low molecular weight over high molecular weight PAHs. Overall, these findings contribute to our understanding of the capacity of fungi to degrade oil in the coastal marine environment.


GigaScience | 2017

The Sponge Microbiome Project

Lucas Moitinho-Silva; Shaun Nielsen; Amnon Amir; Antonio González; Gail Ackermann; Carlo Cerrano; Carmen Astudillo-García; Cole Easson; Detmer Sipkema; Fang Liu; Georg Steinert; Giorgos Kotoulas; Grace P. McCormack; Guofang Feng; James J. Bell; Jan Vicente; Johannes R. Björk; José M. Montoya; Julie B. Olson; Julie Reveillaud; Laura Steindler; Mari Carmen Pineda; Maria V. Marra; Micha Ilan; Michael W. Taylor; Paraskevi N. Polymenakou; Patrick M. Erwin; Peter J. Schupp; Rachel L. Simister; Rob Knight

Abstract Marine sponges (phylum Porifera) are a diverse, phylogenetically deep-branching clade known for forming intimate partnerships with complex communities of microorganisms. To date, 16S rRNA gene sequencing studies have largely utilised different extraction and amplification methodologies to target the microbial communities of a limited number of sponge species, severely limiting comparative analyses of sponge microbial diversity and structure. Here, we provide an extensive and standardised dataset that will facilitate sponge microbiome comparisons across large spatial, temporal, and environmental scales. Samples from marine sponges (n = 3569 specimens), seawater (n = 370), marine sediments (n = 65) and other environments (n = 29) were collected from different locations across the globe. This dataset incorporates at least 268 different sponge species, including several yet unidentified taxa. The V4 region of the 16S rRNA gene was amplified and sequenced from extracted DNA using standardised procedures. Raw sequences (total of 1.1 billion sequences) were processed and clustered with (i) a standard protocol using QIIME closed-reference picking resulting in 39 543 operational taxonomic units (OTU) at 97% sequence identity, (ii) a de novo clustering using Mothur resulting in 518 246 OTUs, and (iii) a new high-resolution Deblur protocol resulting in 83 908 unique bacterial sequences. Abundance tables, representative sequences, taxonomic classifications, and metadata are provided. This dataset represents a comprehensive resource of sponge-associated microbial communities based on 16S rRNA gene sequences that can be used to address overarching hypotheses regarding host-associated prokaryotes, including host specificity, convergent evolution, environmental drivers of microbiome structure, and the sponge-associated rare biosphere.


Marine Pollution Bulletin | 2016

Long-term weathering and continued oxidation of oil residues from the Deepwater Horizon spill

Helen K. White; Chloe H. Wang; Patrick L. Williams; David M. Findley; Alana M. Thurston; Rachel L. Simister; Christoph Aeppli; Robert K. Nelson; Christopher M. Reddy

To investigate the long-term weathering of oil from the Deepwater Horizon (DWH) incident, oil-soaked sand patties were collected from Gulf of Mexico beaches from Florida to Alabama over a three-year period from 2012 to 2014. Analysis of oil residues by gas chromatography with flame ionization detection (GC-FID), thin-layer chromatography with flame ionization detection (TLC-FID), and Fourier transform infrared spectroscopy (FT-IR) indicated uniformity in their chemical composition. Some variability within and between samples was observed, arising from differences in exposure to light and water, which increase the amount of weathering. Oxygenated hydrocarbons (OxHC) produced by weathering processes dominate the majority of oil residues. These OxHC have continued recalcitrance in the environment, and increase in relative abundance over time. Analyses of the bulk characteristics of oil residues via TLC-FID and FT-IR should be continued as these techniques provide important insight into the weathering state of oil residues.

Collaboration


Dive into the Rachel L. Simister's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven J. Hallam

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georg Steinert

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Tsai

University of Auckland

View shared research outputs
Researchain Logo
Decentralizing Knowledge