Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel L. Vannette is active.

Publication


Featured researches published by Rachel L. Vannette.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Nectar bacteria, but not yeast, weaken a plant -pollinator mutualism

Rachel L. Vannette; Marie-Pierre L. Gauthier; Tadashi Fukami

Mutualistic interactions are often subject to exploitation by species that are not directly involved in the mutualism. Understanding which organisms act as such ‘third-party’ species and how they do so is a major challenge in the current study of mutualistic interactions. Here, we show that even species that appear ecologically similar can have contrasting effects as third-party species. We experimentally compared the effects of nectar-inhabiting bacteria and yeasts on the strength of a mutualism between a hummingbird-pollinated shrub, Mimulus aurantiacus, and its pollinators. We found that the common bacterium Gluconobacter sp., but not the common yeast Metschnikowia reukaufii, reduced pollination success, seed set and nectar consumption by pollinators, thereby weakening the plant–pollinator mutualism. We also found that the bacteria reduced nectar pH and total sugar concentration more greatly than the yeasts did and that the bacteria decreased glucose concentration and increased fructose concentration whereas the yeasts affected neither. These distinct changes to nectar chemistry may underlie the microbes contrasting effects on the mutualism. Our results suggest that it is necessary to understand the determinants of microbial species composition in nectar and their differential modification of floral rewards to explain the mutual benefits that plants and pollinators gain from each other.


Ecology Letters | 2014

Historical contingency in species interactions: towards niche‐based predictions

Rachel L. Vannette; Tadashi Fukami

The way species affect one another in ecological communities often depends on the order of species arrival. The magnitude of such historical contingency, known as priority effects, varies across species and environments, but this variation has proven difficult to predict, presenting a major challenge in understanding species interactions and consequences for community structure and function. Here, we argue that improved predictions can be achieved by decomposing species niches into three components: overlap, impact and requirement. Based on classic theories of community assembly, three hypotheses that emphasise related, but distinct influences of the niche components are proposed: priority effects are stronger among species with higher resource use overlap; species that impact the environment to a greater extent exert stronger priority effects; and species whose growth rate is more sensitive to changes in the environment experience stronger priority effects. Using nectar-inhabiting microorganisms as a model system, we present evidence that these hypotheses complement the conventional hypothesis that focuses on the role of environmental harshness, and show that niches can be twice as predictive when separated into components. Taken together, our hypotheses provide a basis for developing a general framework within which the magnitude of historical contingency in species interactions can be predicted.


PLOS ONE | 2014

Honey bees avoid nectar colonized by three bacterial species, but not by a yeast species, isolated from the bee gut.

Ashley P. Good; Marie-Pierre L. Gauthier; Rachel L. Vannette; Tadashi Fukami

The gut microflora of the honey bee, Apis mellifera, is receiving increasing attention as a potential determinant of the bees’ health and their efficacy as pollinators. Studies have focused primarily on the microbial taxa that appear numerically dominant in the bee gut, with the assumption that the dominant status suggests their potential importance to the bees’ health. However, numerically minor taxa might also influence the bees’ efficacy as pollinators, particularly if they are not only present in the gut, but also capable of growing in floral nectar and altering its chemical properties. Nonetheless, it is not well understood whether honey bees have any feeding preference for or against nectar colonized by specific microbial species. To test whether bees exhibit a preference, we conducted a series of field experiments at an apiary using synthetic nectar inoculated with specific species of bacteria or yeast that had been isolated from the bee gut, but are considered minor components of the gut microflora. These species had also been found in floral nectar. Our results indicated that honey bees avoided nectar colonized by the bacteria Asaia astilbes, Erwinia tasmaniensis, and Lactobacillus kunkeei, whereas the yeast Metschnikowia reukaufii did not affect the feeding preference of the insects. Our results also indicated that avoidance of bacteria-colonized nectar was caused not by the presence of the bacteria per se, but by the chemical changes to nectar made by the bacteria. These findings suggest that gut microbes may not only affect the bees’ health as symbionts, but that some of the microbes may possibly affect the efficacy of A. mellifera as pollinators by altering nectar chemistry and influencing their foraging behavior.


Ecology | 2016

Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators

Rachel L. Vannette; Tadashi Fukami

Secondary metabolites that are present in floral nectar have been hypothesized to enhance specificity in plant-pollinator mutualism by reducing larceny by non-pollinators, including microorganisms that colonize nectar. However, few studies have tested this hypothesis. Using synthetic nectar, we conducted laboratory and field experiments to examine the effects of five chemical compounds found in nectar on the growth and metabolism of nectar-colonizing yeasts and bacteria, and the interactive effects of these compounds and nectar microbes on the consumption of nectar by pollinators. In most cases, focal compounds inhibited microbial growth, but the extent of these effects depended on compound identity, concentration, and microbial species. Moreover, most compounds did not substantially decrease sugar metabolism by microbes, and microbes reduced the concentration of some compounds in nectar. Using artificial flowers in the field, we also found that the common nectar yeast Metschnikowia reukaufii altered nectar consumption by small floral visitors, but only in nectar containing catalpol. This effect was likely mediated by a mechanism independent of catalpol metabolism. Despite strong compound-specific effects on microbial growth, our results suggest that the secondary metabolites tested here are unlikely to be an effective general defense mechanism for preserving nectar sugars for pollinators. Instead, our results indicate that microbial colonization of nectar could reduce the concentration of secondary compounds in nectar and, in some cases, reduce deterrence to pollinators.


Ecology Letters | 2017

Dispersal enhances beta diversity in nectar microbes

Rachel L. Vannette; Tadashi Fukami

Dispersal is considered a key driver of beta diversity, the variation in species composition among local communities, but empirical tests remain limited. We manipulated dispersal of nectar-inhabiting bacteria and yeasts via flower-visiting animals to examine how dispersal influenced microbial beta diversity among flowers. Contrary to the prevailing view that dispersal lowers beta diversity, we found beta diversity was highest when dispersal was least limited. Our analysis suggested that this unexpected pattern might have resulted from stronger priority effects under increased dispersal. Dispersal is highly stochastic, generating variability in species arrival history and consequently the potential for community divergence via priority effects, in these and likely many other microbial, plant, and animal communities. Yet most previous experiments eliminated this possibility. We suggest that the positive effects of dispersal on beta diversity, like the one we report here, may have been greatly underappreciated.


Ecology and Evolution | 2014

Plant-derived differences in the composition of aphid honeydew and their effects on colonies of aphid-tending ants

Elizabeth G. Pringle; Alexandria Novo; Ian Ableson; Raymond V. Barbehenn; Rachel L. Vannette

In plant–ant–hemipteran interactions, ants visit plants to consume the honeydew produced by phloem-feeding hemipterans. If genetically based differences in plant phloem chemistry change the chemical composition of hemipteran honeydew, then the plants genetic constitution could have indirect effects on ants via the hemipterans. If such effects change ant behavior, they could feed back to affect the plant itself. We compared the chemical composition of honeydews produced by Aphis nerii aphid clones on two milkweed congeners, Asclepias curassavica and Asclepias incarnata, and we measured the responses of experimental Linepithema humile ant colonies to these honeydews. The compositions of secondary metabolites, sugars, and amino acids differed significantly in the honeydews from the two plant species. Ant colonies feeding on honeydew derived from A. incarnata recruited in higher numbers to artificial diet, maintained higher queen and worker dry weight, and sustained marginally more workers than ants feeding on honeydew derived from A. curassavica. Ants feeding on honeydew from A. incarnata were also more exploratory in behavioral assays than ants feeding from A. curassavica. Despite performing better when feeding on the A. incarnata honeydew, ant workers marginally preferred honeydew from A. curassavica to honeydew from A. incarnata when given a choice. Our results demonstrate that plant congeners can exert strong indirect effects on ant colonies by means of plant-species-specific differences in aphid honeydew chemistry. Moreover, these effects changed ant behavior and thus could feed back to affect plant performance in the field.


Journal of Ecology | 2013

Mycorrhizal abundance affects the expression of plant resistance traits and herbivore performance

Rachel L. Vannette; Mark D. Hunter

Summary n n nThe effects of mutualistic interactions on partner phenotype and fitness can vary with many factors, including the abundance of interacting partners. Partner abundance may determine the relative costs and benefits associated with the interaction. Although arbuscular mycorrhizal fungi (AMF) can strongly influence plant phenotype and community interactions, the effects of AMF abundance on plant resistance traits and multitrophic interactions are not well understood. We tested the hypothesis that increasing AMF abundance in soil will increase mycorrhizal colonization and affect plant biomass, foliar phosphorus concentration, the expression of plant resistance and herbivore performance. nWe inoculated Asclepias syriaca seedlings with Glomus etunicatum, Scutellospora fulgida and a mix of the two species in 11 AMF abundance treatments. We quantified plant phosphorus (P), growth and resistance phenotype and the performance of a specialist herbivore, Danaus plexippus on plants associated with varying amounts of fungi. nIncreasing abundance of S.xa0fulgida or G.xa0etunicatum in soil increased the proportion of plant root colonized by AMF, but root colonization by a mix of the fungi was not related to inoculum density. The abundance of S.xa0fulgida, but not G.xa0etunicatum, increased per cent foliar P and trichome density, but decreased latex exudation. Abundance of all AMF treatments tended to decrease specific leaf mass (SLM), and the two single-species treatments unimodally affected the expression of total foliar cardenolides. Increasing abundance of the mix of AMF species also increased above-ground biomass, foliar P and trichome density, but had little effect on other traits. The presence of AMF, species identity and the AMF abundance all explained significant variation in the expression of plant traits, although their relative contribution varied depending on the trait examined. Mycorrhizal abundance strongly increased caterpillar growth rate, which was associated with a decline in SLM. nSynthesis. Variation in mycorrhizal abundance can profoundly influence the expression of plant resistance and subsequent herbivore performance. AMF abundance may be a key, but overlooked factor in determining the outcome of mycorrhizal mutualisms.


Frontiers in Plant Science | 2013

Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species

Rachel L. Vannette; Mark D. Hunter; Sergio Rasmann

Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)—which all produce toxic cardenolides—with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense.


Journal of Agricultural and Food Chemistry | 2017

Harnessing insect-microbe chemical communications to control insect pests of agricultural systems

John J. Beck; Rachel L. Vannette

Insect pests cause serious economic, yield, and food safety problems to managed crops worldwide. Compounding these problems, insect pests often vector pathogenic or toxigenic microbes to plants. Previous work has considered plant-insect and plant-microbe interactions separately. Although insects are well-understood to use plant volatiles to locate hosts, microorganisms can produce distinct and abundant volatile compounds that in some cases strongly attract insects. In this paper, we focus on the microbial contribution to plant volatile blends, highlighting the compounds emitted and the potential for variation in microbial emission. We suggest that these aspects of microbial volatile emission may make these compounds ideal for use in agricultural applications, as they may be more specific or enhance methods currently used in insect control or monitoring. Our survey of microbial volatiles in insect-plant interactions suggests that these emissions not only signal host suitability but may indicate a distinctive time frame for optimal conditions for both insect and microbe. Exploitation of these host-specific microbe semiochemicals may provide important microbe- and host-based attractants and a basis for future plant-insect-microbe chemical ecology investigations.


Ecology | 2016

Forest area and connectivity influence root‐associated fungal communities in a fragmented landscape

Rachel L. Vannette; Devin R. Leopold; Tadashi Fukami

Habitat fragmentation is well known to affect plant and animal diversity as a result of reduced habitat area and connectivity, but its effects on microorganisms are poorly understood. Using high-throughput sequencing of two regions of the rRNA gene, we studied the effects of forest area and connectivity on the diversity and composition of fungi associated with the roots of the dominant tree, Metrosideros polymorpha, in a lava-fragmented landscape on the Island of Hawaii. We found that local fungal diversity increased with forest area, whereas fungal species composition was correlated with fragment connectivity. Fragment size and connectivity were significant predictors even when we included environmental covariates, which were also associated with fungal diversity and composition. Fungal species composition was more similar among highly connected fragments than among poorly connected ones. We also identified individual taxa that varied in abundance with connectivity. Taken together, our results show that habitat fragmentation can alter microbial diversity and composition via differential response among fungal phyla and individual taxa to habitat connectivity.

Collaboration


Dive into the Rachel L. Vannette's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Beck

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Ableson

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio Rasmann

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge