Rachel M. Gerstein
University of Massachusetts Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rachel M. Gerstein.
Nature Immunology | 2005
Arivazhagan Sambandam; Ivan Maillard; Valerie P. Zediak; Lanwei Xu; Rachel M. Gerstein; Avinash Bhandoola
Signaling by the transmembrane receptor Notch is critical for T lineage development, but progenitor subsets that first receive Notch signals have not been defined. Here we identify an immature subset of early T lineage progenitors (ETPs) in the thymus that expressed the tyrosine kinase receptor Flt3 and had preserved B lineage potential at low progenitor frequency. Notch signaling was active in ETPs and was required for generation of the ETP population. Additionally, Notch signals contributed to the subsequent differentiation of ETPs. In contrast, multipotent hematopoietic progenitors circulated in the blood even in the absence of Notch signaling, suggesting that critical Notch signals during early T lineage development are delivered early after thymic entry.
Cancer Cell | 2003
Huiling Liang; Qin Chen; Andrew H. Coles; Stephen J. Anderson; German Pihan; Allan Bradley; Rachel M. Gerstein; Roland Jurecic; Stephen N. Jones
Wnt5a is a member of the Wnt family of secreted glycoproteins that play essential organizing roles in development. Similar to other Wnt members, Wnt5a can upregulate cell proliferation and has been proposed to have oncogenic function. Here we report that Wnt5a signals through the noncanonical Wnt/Ca++ pathway to suppress cyclin D1 expression and negatively regulate B cell proliferation in a cell-autonomous manner. Wnt5a hemizygous mice develop myeloid leukemias and B cell lymphomas that are clonal in origin and display loss of Wnt5a function in tumor tissues. Furthermore, analysis of human primary leukemias reveals deletion of the WNT5A gene and/or loss of WNT5A expression in a majority of the patient samples. These results demonstrate that Wnt5a suppresses hematopoietic malignancies.
Journal of Experimental Medicine | 2002
Juli P. Miller; David J. Izon; William DeMuth; Rachel M. Gerstein; Avinash Bhandoola; David Allman
Little is known about the signals that promote early B lineage differentiation from common lymphoid progenitors (CLPs). Using a stromal-free culture system, we show that interleukin (IL)-7 is sufficient to promote the in vitro differentiation of CLPs into B220+ CD19+ B lineage progenitors. Consistent with current models of early B cell development, surface expression of B220 was initiated before CD19 and was accompanied by the loss of T lineage potential. To address whether IL-7 receptor (R) activity is essential for early B lineage development in vivo, we examined the frequencies of CLPs and downstream pre–pro- and pro-B cells in adult mice lacking either the α chain or the common gamma chain (γc) of the IL-7R. The data indicate that although γc −/− mice have normal frequencies of CLPs, both γc −/− and IL-7Rα−/− mice lack detectable numbers of all downstream early B lineage precursors, including pre–pro-B cells. These findings challenge previous notions regarding the point in B cell development affected by the loss of IL-7R signaling and suggest that IL-7 plays a key and requisite role during the earliest phases of B cell development.
Journal of Immunology | 2003
Kishore R. Alugupalli; Rachel M. Gerstein; Jianzhu Chen; Eva Szomolanyi-Tsuda; Robert T. Woodland; John M. Leong
The rate of pathogen clearance is a critical determinant of morbidity and mortality. We sought to characterize the immune response responsible for the remarkably rapid clearance of individual episodes of bacteremia caused by the relapsing fever bacterium, Borrelia hermsii. SCID or Rag−/− mice were incapable of resolving B. hermsii infection, indicating a critical role for T and/or B cells. TCR−/− mice, which lack T cells, and IL-7−/− mice, which are deficient in both T cells and follicular B cells, but not in B1 cells and splenic marginal zone (MZ) B cells, efficiently cleared B. hermsii. These findings suggested that B1 cells and/or MZ B cells, two B cell subsets that are known to participate in rapid, T-independent responses, might be involved. The efficient resolution of the episodes of moderate level bacteremia by splenectomized mice suggested that MZ B cells do not play the primary role in clearance of this bacterium. In contrast, xid mice, which are deficient in B1 cells, suffered more severe episodes of bacteremia than wild-type mice. The hypothesis that B1 cells are critical for clearance of B. hermsii was further supported by a selective expansion of the B1b (i.e., IgMhigh, IgD−/low, Mac1+ CD23−, and CD5−) cell subset in infected xid mice, which coincided with the eventual resolution of infection. Finally, mice selectively incapable of secreting IgM, the dominant isotype produced by B1 cells, were completely unable to clear B. hermsii. Together these results support the model that B1b cells generate the T-independent IgM required for the control and resolution of relapsing fever borreliosis.
Journal of Experimental Medicine | 2004
Lisa A. Borghesi; Lih-Yun Hsu; Juli P. Miller; Michael G. Anderson; Leonard A. Herzenberg; Leonore A. Herzenberg; Mark S. Schlissel; David Allman; Rachel M. Gerstein
Expression of V(D)J recombinase activity in developing lymphocytes is absolutely required for initiation of V(D)J recombination at antigen receptor loci. However, little is known about when during hematopoietic development the V(D)J recombinase is first active, nor is it known what elements activate the recombinase in multipotent hematopoietic progenitors. Using mice that express a fluorescent transgenic V(D)J recombination reporter, we show that the V(D)J recombinase is active as early as common lymphoid progenitors (CLPs) but not in the upstream progenitors that retain myeloid lineage potential. Evidence of this recombinase activity is detectable in all four progeny lineages (B, T, and NK, and DC), and rag2 levels are the highest in progenitor subsets immediately downstream of the CLP. By single cell PCR, we demonstrate that V(D)J rearrangements are detectable at IgH loci in ∼5% of splenic natural killer cells. Finally, we show that recombinase activity in CLPs is largely controlled by the Erag enhancer. As activity of the Erag enhancer is restricted to the B cell lineage, this provides the first molecular evidence for establishment of a lineage-specific transcription program in multipotent progenitors.
Journal of Biological Chemistry | 2002
James B. Petro; Rachel M. Gerstein; John B. Lowe; Robert S. Carter; Nicholas Shinners; Wasif N. Khan
Mature B-lymphocytes develop sequentially from transitional type 1 (T1) and type 2 (T2) precursors in the spleen. To elucidate the mechanisms that regulate the developmental fate of these distinct B cell subsets, we investigated their biochemical and biological responses following stimulation through the B-cell antigen receptor (BCR). As compared with the T1 subset, T2 cells are more responsive to BCR engagement, as evidenced by their robust induction of activation markers, expression of the prosurvival protein Bcl-xL, and enhanced proliferation. BCR stimulation of T2 cells leads to the appearance of B cells with mature phenotypic characteristics, whereas T1 cells die. All of these T2 responses are dependent on the BCR signal transducer Brutons tyrosine kinase, which is dispensable for the T1 to T2 transition. Furthermore, the serine/threonine kinases ERK, p38 MAPK, and Akt are predominantly activated in T2 compared with T1 B cells following BCR cross-linking. We conclude that T1 and T2 B cells respond differentially to BCR engagement via the induction of stage-specific signaling pathways. In turn, these signaling pathways probably govern the development and selection processes that are critical for the formation of the mature B cell compartment.
Journal of Experimental Medicine | 2005
Lisa Borghesi; Jennifer Aites; Shakira Nelson; Preslav Lefterov; Pamela James; Rachel M. Gerstein
Common lymphoid progenitors (CLPs) are the first bone marrow precursors in which V(D)J recombinase activity is up-regulated. Here, we show that loss of the transcription factor E47 produces a reduced CLP population that lacks V(D)J recombinase activity and D-JH rearrangements in vivo. Apart from a profound arrest before the pro–B cell stage, other downstream lymphoid progeny of CLPs are still intact in these mice albeit at reduced numbers. In contrast to the inhibition of recombinase activity in early B lineage precursors in E47-deficient animals, loss of either E47 or its cis-acting target Erag (enhancer of rag transcription) has little effect on recombinase activity in thymic T lineage precursors. Taken together, this work defines a role for E47 in regulating lineage progression at the CLP stage in vivo and describes the first transcription factor required for lineage-specific recombinase activity.
Neuro-oncology | 2009
Li Li; Amalia Dutra; Evgenia Pak; Joseph E. Labrie; Rachel M. Gerstein; Pier Paolo Pandolfi; Lawrence Recht; Alonzo H. Ross
Glioblastomas often show activation of epidermal growth factor receptor (EGFR) and loss of PTEN (phosphatase and tensin homolog deleted on chromosome 10) tumor suppressor, but it is not known if these two genetic lesions act together to transform cells. To answer this question, we infected PTEN-/- neural precursor cells with a retrovirus encoding EGFRvIII, which is a constitutively activated receptor. EGFRvIII PTEN-/- cells formed highly mitotic tumors with nuclear pleomorphism, necrotic areas, and glioblastoma markers. The transformed cells showed increased cell proliferation, centrosome amplification, colony formation in soft agar, self-renewal, expression of the stem cell marker CD133, and resistance to oxidative stress and ionizing radiation. The RAS/mitogen-activated protein kinase (ERK) and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathways were activated, and checkpoint kinase 1 (Chk1), the DNA damage regulator, was phosphorylated at S280 by Akt, suppressing Chk1 phosphorylation at S345 in response to ionizing irradiation. The PTEN-/- cells showed low levels of DNA damage in the absence of irradiation, which was increased by EGFRvIII expression. Finally, secondary changes occurred during tumor growth in mice. Cells from these tumors showed decreased tumor latencies and additional chromosomal aberrations. Most of these tumor lines showed translocations of mouse chromosome 15. Intracranial injections of one of these lines led to invasive, glial fibrillary acidic protein-positive, nestin-positive tumors. These results provide a molecular basis for the occurrence of these two genetic lesions in brain tumors and point to a role in induction of genomic instability.
Clinical Cancer Research | 2015
Sally E. Trabucco; Rachel M. Gerstein; Andrew M. Evens; James E. Bradner; Leonard D. Shultz; Dale L. Greiner; Hong Zhang
Purpose: Approximately 50% of patients with diffuse large B-cell lymphoma (DLBCL) enter long-term remission after standard chemotherapy. Patients with DLBCL who do not respond to chemotherapy have few treatment options. There remains a critical need to identify effective and targeted therapeutics for DLBCL. Experimental Design: Recent studies have highlighted the incidence of increased c-MYC protein in DLBCL and the correlation between high levels of c-MYC protein and poor survival prognosis of patients with DLBCL, suggesting that c-MYC is a compelling target for DLBCL therapy. The small molecule JQ1 suppresses c-MYC expression through inhibition of the bromodomain and extra-terminal (BET) family of bromodomain proteins. We investigated whether JQ1 can inhibit proliferation of DLBCL cells in culture and xenograft models in vivo. Results: We show that JQ1 at nanomolar concentrations efficiently inhibited proliferation of human DLBCL cells in a dose-dependent manner regardless of their molecular subtypes, suggesting a broad effect of JQ1 in DLBCL. The initial G1 arrest induced by JQ1 treatment in DLBCL cells was followed by either apoptosis or senescence. The expression of c-MYC was suppressed as a result of JQ1 treatment from the natural, chromosomally translocated, or amplified loci. Furthermore, JQ1 treatment significantly suppressed growth of DLBCL cells engrafted in mice and improved survival of engrafted mice. Conclusion: Our results demonstrate that inhibition of the BET family of bromodomain proteins by JQ1 has potential clinical use in the treatment of DLBCL. Clin Cancer Res; 21(1); 113–22. ©2014 AACR. See related commentary by Mottok and Gascoyne, p. 4
Journal of Immunology | 2008
Sachin Malhotra; Yoshihiro Baba; Karla P. Garrett; Frank J. T. Staal; Rachel M. Gerstein; Paul W. Kincade
The Wnt family of secreted glycoproteins has been implicated in many aspects of development, but its contribution to blood cell formation is controversial. We overexpressed Wnt3a, Wnt5a, and Dickkopf 1 in stromal cells from osteopetrotic mice and used them in coculture experiments with highly enriched stem and progenitor cells. The objective was to learn whether and how particular stages of B lymphopoiesis are responsive to these Wnt family ligands. We found that canonical Wnt signaling, through Wnt3a, inhibited B and plasmacytoid dendritic cell, but not conventional dendritic cell development. Wnt5a, which can oppose canonical signaling or act through a different pathway, increased B lymphopoiesis. Responsiveness to both Wnt ligands diminished with time in culture and stage of development. That is, only hematopoietic stem cells and very primitive progenitors were affected. Although Wnt3a promoted retention of hematopoietic stem cell markers, cell yields and dye dilution experiments indicated it was not a growth stimulus. Other results suggest that lineage instability results from canonical Wnt signaling. Lymphoid progenitors rapidly down-regulated RAG-1, and some acquired stem cell-staining characteristics as well as myeloid and erythroid potential when exposed to Wnt3a-producing stromal cells. We conclude that at least two Wnt ligands can differentially regulate early events in B lymphopoiesis, affecting entry and progression in distinct differentiation lineages.