Rachel Mackelprang
California State University, Northridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rachel Mackelprang.
Nature Genetics | 2003
Gaël Yvert; Rachel B. Brem; Jacqueline Whittle; Joshua M. Akey; Eric J. Foss; Erin N. Smith; Rachel Mackelprang
Natural genetic variation can cause significant differences in gene expression, but little is known about the polymorphisms that affect gene regulation. We analyzed regulatory variation in a cross between laboratory and wild strains of Saccharomyces cerevisiae. Clustering and linkage analysis defined groups of coregulated genes and the loci involved in their regulation. Most expression differences mapped to trans-acting loci. Positional cloning and functional assays showed that polymorphisms in GPA1 and AMN1 affect expression of genes involved in pheromone response and daughter cell separation, respectively. We also asked whether particular classes of genes were more likely to contain trans-regulatory polymorphisms. Notably, transcription factors showed no enrichment, and trans-regulatory variation seems to be broadly dispersed across classes of genes with different molecular functions.
Nature | 2011
Rachel Mackelprang; Mark P. Waldrop; Kristen M. DeAngelis; Maude M. David; Krystle L. Chavarria; Steven J. Blazewicz; Edward M. Rubin; Janet K. Jansson
Permafrost contains an estimated 1672 Pg carbon (C), an amount roughly equivalent to the total currently contained within land plants and the atmosphere. This reservoir of C is vulnerable to decomposition as rising global temperatures cause the permafrost to thaw. During thaw, trapped organic matter may become more accessible for microbial degradation and result in greenhouse gas emissions. Despite recent advances in the use of molecular tools to study permafrost microbial communities, their response to thaw remains unclear. Here we use deep metagenomic sequencing to determine the impact of thaw on microbial phylogenetic and functional genes, and relate these data to measurements of methane emissions. Metagenomics, the direct sequencing of DNA from the environment, allows the examination of whole biochemical pathways and associated processes, as opposed to individual pieces of the metabolic puzzle. Our metagenome analyses reveal that during transition from a frozen to a thawed state there are rapid shifts in many microbial, phylogenetic and functional gene abundances and pathways. After one week of incubation at 5 °C, permafrost metagenomes converge to be more similar to each other than while they are frozen. We find that multiple genes involved in cycling of C and nitrogen shift rapidly during thaw. We also construct the first draft genome from a complex soil metagenome, which corresponds to a novel methanogen. Methane previously accumulated in permafrost is released during thaw and subsequently consumed by methanotrophic bacteria. Together these data point towards the importance of rapid cycling of methane and nitrogen in thawing permafrost.
The ISME Journal | 2012
Olivia U. Mason; Terry C. Hazen; Sharon E. Borglin; Patrick Chain; Eric A. Dubinsky; Julian L. Fortney; James Han; Hoi-Ying N. Holman; Jenni Hultman; Regina Lamendella; Rachel Mackelprang; Stephanie Malfatti; Lauren M. Tom; Susannah G. Tringe; Tanja Woyke; Jizhong Zhou; Edward M. Rubin; Janet K. Jansson
The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.
Standards in Genomic Sciences | 2010
Jack A. Gilbert; Folker Meyer; Dion Antonopoulos; Pavan Balaji; C. Titus Brown; Christopher T. Brown; Narayan Desai; Jonathan A. Eisen; Dirk Evers; Dawn Field; Wu Feng; Daniel H. Huson; Janet K. Jansson; Rob Knight; James Knight; Eugene Kolker; Kostas Konstantindis; Joel E. Kostka; Nikos C. Kyrpides; Rachel Mackelprang; Alice C. McHardy; Christopher Quince; Jeroen Raes; Alexander Sczyrba; Ashley Shade; Rick Stevens
Between July 18th and 24th 2010, 26 leading microbial ecology, computation, bioinformatics and statistics researchers came together in Snowbird, Utah (USA) to discuss the challenge of how to best characterize the microbial world using next-generation sequencing technologies. The meeting was entitled “Terabase Metagenomics” and was sponsored by the Institute for Computing in Science (ICiS) summer 2010 workshop program. The aim of the workshop was to explore the fundamental questions relating to microbial ecology that could be addressed using advances in sequencing potential. Technological advances in next-generation sequencing platforms such as the Illumina HiSeq 2000 can generate in excess of 250 billion base pairs of genetic information in 8 days. Thus, the generation of a trillion base pairs of genetic information is becoming a routine matter. The main outcome from this meeting was the birth of a concept and practical approach to exploring microbial life on earth, the Earth Microbiome Project (EMP). Here we briefly describe the highlights of this meeting and provide an overview of the EMP concept and how it can be applied to exploration of the microbiome of each ecosystem on this planet.
Nature | 2015
Jenni Hultman; Mark P. Waldrop; Rachel Mackelprang; Maude M. David; Jack W. McFarland; Steven J. Blazewicz; Jennifer W. Harden; Merritt R. Turetsky; A. David McGuire; Manesh B Shah; Nathan C. VerBerkmoes; Lang Ho Lee; Konstantinos Mavrommatis; Janet K. Jansson
Over 20% of Earth’s terrestrial surface is underlain by permafrost with vast stores of carbon that, once thawed, may represent the largest future transfer of carbon from the biosphere to the atmosphere. This process is largely dependent on microbial responses, but we know little about microbial activity in intact, let alone in thawing, permafrost. Molecular approaches have recently revealed the identities and functional gene composition of microorganisms in some permafrost soils and a rapid shift in functional gene composition during short-term thaw experiments. However, the fate of permafrost carbon depends on climatic, hydrological and microbial responses to thaw at decadal scales. Here we use the combination of several molecular ‘omics’ approaches to determine the phylogenetic composition of the microbial communities, including several draft genomes of novel species, their functional potential and activity in soils representing different states of thaw: intact permafrost, seasonally thawed active layer and thermokarst bog. The multi-omics strategy reveals a good correlation of process rates to omics data for dominant processes, such as methanogenesis in the bog, as well as novel survival strategies for potentially active microbes in permafrost.
Nucleic Acids Research | 2014
Emmanuel Prestat; Maude M. David; Jenni Hultman; Neslihan Taş; Regina Lamendella; Jill Dvornik; Rachel Mackelprang; David D. Myrold; Ari Jumpponen; Susannah G. Tringe; Konstantinos Mavromatis; Janet K. Jansson
A new functional gene database, FOAM (Functional Ontology Assignments for Metagenomes), was developed to screen environmental metagenomic sequence datasets. FOAM provides a new functional ontology dedicated to classify gene functions relevant to environmental microorganisms based on Hidden Markov Models (HMMs). Sets of aligned protein sequences (i.e. ‘profiles’) were tailored to a large group of target KEGG Orthologs (KOs) from which HMMs were trained. The alignments were checked and curated to make them specific to the targeted KO. Within this process, sequence profiles were enriched with the most abundant sequences available to maximize the yield of accurate classifier models. An associated functional ontology was built to describe the functional groups and hierarchy. FOAM allows the user to select the target search space before HMM-based comparison steps and to easily organize the results into different functional categories and subcategories. FOAM is publicly available at http://portal.nersc.gov/project/m1317/FOAM/.
Immunological Reviews | 2002
Rachel Mackelprang; Christopher S. Carlson; Lakshman Subrahmanyan; Robert J. Livingston; Michael A. Eberle; Deborah A. Nickerson
Summary: Identifying common sequence variations known as single nucleotide polymorphisms (SNPs) in human populations is one of the current objectives of the human genome project. Nearly 3 million SNPs have been identified. Analysis of the relative allele frequency of these markers in human populations and the genetic associations between these markers, known as linkage disequilibrium, is now underway to generate a high‐density genetic map. Because of the central role T cells play in immune reactivity, the T‐cell receptor (TCR) loci have long been considered important candidates for common disease susceptibility within the immune system (e.g., asthma, atopy and autoimmunity). Over the past two decades, hundreds of SNPs in the TCR loci have been identified. Most studies have focused on defining SNPs in the variable gene segments which are involved in antigenic recognition. On average, the coding sequence of each TCR variable gene segment contains two SNPs, with many more found in the 5′, 3′ and intronic sequences of these segments. Therefore, a potentially large repertoire of functional variants exists in these loci. Association between SNPs (linkage disequilibrium) extends approximately 30 kb in the TCR loci, although a few larger regions of disequilibrium have been identified. Therefore, the SNPs found in one variable gene segment may or may not be associated with SNPs in other surrounding variable gene segments. This suggests that meaningful association studies in the TCR loci will require the analysis and typing of large marker sets to fully evaluate the role of TCR loci in common disease susceptibility in human populations.
Human Genetics | 2006
Rachel Mackelprang; Robert J. Livingston; Michael A. Eberle; Christopher S. Carlson; Qian Yi; Joshua M. Akey; Deborah A. Nickerson
T cell receptors (TR), through their interaction with the major histocompatibility complex, play a central role in immune responsiveness and potentially immune-related disorders. We resequenced all 57 variable (V) genes in the human T cell receptor alpha and delta (TRA/TRD) locus in 40 individuals of Northern European, Mexican, African-American and Chinese descent. Two hundred and eighty-four single nucleotide polymorphisms (SNPs) were identified. The distribution of SNPs between V genes was heterogeneous, with an average of five SNPs per gene and a range of zero to 15. We describe the patterns of linkage disequilibrium for these newly discovered SNPs and compare these patterns with other emerging large-scale datasets (e.g. Perlegen and HapMap projects) to place our findings into a framework for future analysis of genotype–phenotype associations across this locus. Furthermore, we explore signatures of natural selection across V genes. We find evidence of strong directional selection at this locus as evidenced by unusually high values of Fst
The ISME Journal | 2017
Rachel Mackelprang; Alexander Burkert; Monica Haw; Tara Mahendrarajah; Christopher H. Conaway; Thomas A Douglas; Mark P. Waldrop
In permafrost (perennially frozen ground) microbes survive oligotrophic conditions, sub-zero temperatures, low water availability and high salinity over millennia. Viable life exists in permafrost tens of thousands of years old but we know little about the metabolic and physiological adaptations to the challenges presented by life in frozen ground over geologic time. In this study we asked whether increasing age and the associated stressors drive adaptive changes in community composition and function. We conducted deep metagenomic and 16 S rRNA gene sequencing across a Pleistocene permafrost chronosequence from 19 000 to 33 000 years before present (kyr). We found that age markedly affected community composition and reduced diversity. Reconstruction of paleovegetation from metagenomic sequence suggests vegetation differences in the paleo record are not responsible for shifts in community composition and function. Rather, we observed shifts consistent with long-term survival strategies in extreme cryogenic environments. These include increased reliance on scavenging detrital biomass, horizontal gene transfer, chemotaxis, dormancy, environmental sensing and stress response. Our results identify traits that may enable survival in ancient cryoenvironments with no influx of energy or new materials.
The Journal of Comparative Neurology | 2013
Marilyn Juarez; Michelle Reyes; Tiffany Coleman; Lisa S. Rotenstein; Sothy Sao; Darwin Martinez; Matthew H. Jones; Rachel Mackelprang; Maria Elena de Bellard
The neural crest is a population of mesenchymal cells that after migrating from the neural tube gives rise to structure and cell types: the jaw, part of the peripheral ganglia, and melanocytes. Although much is known about neural crest development in jawed vertebrates, a clear picture of trunk neural crest development for elasmobranchs is yet to be developed. Here we present a detailed study of trunk neural crest development in the bamboo shark, Chiloscyllium punctatum. Vital labeling with dioctadecyl tetramethylindocarbocyanine perchlorate (DiI) and in situ hybridization using cloned Sox8 and Sox9 probes demonstrated that trunk neural crest cells follow a pattern similar to the migratory paths already described in zebrafish and amphibians. We found shark trunk neural crest along the rostral side of the somites, the ventromedial pathway, the branchial arches, the gut, the sensory ganglia, and the nerves. Interestingly, C. punctatum Sox8 and Sox9 sequences aligned with vertebrate SoxE genes, but appeared to be more ancient than the corresponding vertebrate paralogs. The expression of these two SoxE genes in trunk neural crest cells, especially Sox9, matched the Sox10 migratory patterns observed in teleosts. Also of interest, we observed DiI cells and Sox9 labeling along the lateral line, suggesting that in C. punctatum, glial cells in the lateral line are likely of neural crest origin. Although this has been observed in other vertebrates, we are the first to show that the pattern is present in cartilaginous fishes. These findings demonstrate that trunk neural crest cell development in C. punctatum follows the same highly conserved migratory pattern observed in jawed vertebrates. J. Comp. Neurol. 521:3303–3320, 2013.