Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel N. Gomes is active.

Publication


Featured researches published by Rachel N. Gomes.


Critical Care | 2007

Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis

Fernando Bozza; Jorge I. F. Salluh; André Miguel Japiassú; Márcio Soares; Edson F. Assis; Rachel N. Gomes; Marcelo T. Bozza; Hugo C. Castro-Faria-Neto; Patricia T. Bozza

IntroductionThe current shortage of accurate and readily available, validated biomarkers of disease severity in sepsis is an important limitation when attempting to stratify patients into homogeneous groups, in order to study pathogenesis or develop therapeutic interventions. The aim of the present study was to determine the cytokine profile in plasma of patients with severe sepsis by using a multiplex system for simultaneous detection of 17 cytokines.MethodsThis was a prospective cohort study conducted in four tertiary hospitals. A total of 60 patients with a recent diagnosis of severe sepsis were included. Plasma samples were collected for measurement of cytokine concentrations. A multiplex analysis was performed to evaluate levels of 17 cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, interferon-γ, granulocyte colony-stimulating factor [G-CSF], granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein [MCP]-1, macrophage inflammatory protein-1 and tumour necrosis factor-α). Cytokine concentrations were related to the presence of severe sepsis or septic shock, the severity and evolution of organ failure, and early and late mortality.ResultsConcentrations of IL-1β, IL-6, IL-7, IL-8, IL-10, IL-13, interferon-γ, MCP-1 and tumour necrosis factor-α were significantly higher in septic shock patients than in those with severe sepsis. Cytokine concentrations were associated with severity and evolution of organ dysfunction. With regard to the severity of organ dysfunction on day 1, IL-8 and MCP-1 exhibited the best correlation with Sequential Organ Failure Assessment score. In addition, IL-6, IL-8 and G-CSF concentrations during the first 24 hours were predictive of worsening organ dysfunction or failure of organ dysfunction to improve on day three. In terms of predicting mortality, the cytokines IL-1β, IL-4, IL-6, IL-8, MCP-1 and G-CSF had good accuracy for predicting early mortality (< 48 hours), and IL-8 and MCP-1 had the best accuracy for predicting mortality at 28 days. In multivariate analysis, only MCP-1 was independently associated with prognosis.ConclusionIn this exploratory analysis we demonstrated that use of a multiple cytokine assay platform allowed identification of distinct cytokine profiles associated with sepsis severity, evolution of organ failure and death.


Shock | 2004

MACROPHAGE MIGRATION INHIBITORY FACTOR LEVELS CORRELATE WITH FATAL OUTCOME IN SEPSIS

Fernando A. Bozza; Rachel N. Gomes; André Miguel Japiassú; Márcio Soares; Hugo C. Castro-Faria-Neto; Patricia T. Bozza; Marcelo T. Bozza

Macrophage migration inhibitory factor (MIF) is a cytokine playing a critical role in the pathophysiology of experimental sepsis. The purpose of this study was to determine the levels of MIF and to compare those to interleukin-6 (IL-6) levels in predicting mortality among critically ill patients with sepsis. The levels of MIF and IL-6 were measured in 25 patients with septic shock, 17 patients with sepsis, and 11 healthy volunteers. The median plasma concentrations of MIF and IL-6 were significantly higher in patients with septic shock and in patients with sepsis than in healthy controls. MIF levels were significantly different between survivors and nonsurvivors, as were IL-6 levels. Discriminatory power in predicting mortality, as assessed by the areas under receiver operating characteristic curves (AUROC), was 0.793 for MIF and 0.680 for IL-6. Finally, high plasma levels of MIF (>1100 pg/mL) had a sensitivity of 100% and a specificity of 64% to identify the patients who eventually would evolve to a fatal outcome. Thus, our data suggest that an elevated MIF level in recently diagnosed septic patients appears to be an early indicator of poor outcome and a potential entry criterion for future studies with therapeutic intervention aiming at MIF neutralization.


Journal of Leukocyte Biology | 2001

TSG-14 transgenic mice have improved survival to endotoxemia and to CLP-induced sepsis

Adriana A.M. Dias; Adam Goodman; Jane Santos; Rachel N. Gomes; Anne Altmeyer; Patricia T. Bozza; Maria Fátima Horta; Jan Vilcek; Luiz F. L. Reis

Tumor necrosis factor‐stimulated gene 14 (TSG‐14)/PTX3 was identifiedoriginally as a TNF‐α and IL‐1β‐stimulated gene from normal, humanforeskin fibroblasts and vascular endothelial cells, respectively. TSG‐14 gene encodes a 42‐kDa‐secreted glycoprotein with acarboxy‐terminal half that shares homology with the entire sequence of C‐reactive protein (CRP) and serum amyloid P component (SAP),acute‐phase proteins of the pentraxin family. Some experimentalevidence suggests that TSG‐14 plays a role in inflammation, yet itsfunction and mechanism of action remain unclear. We have generatedtransgenic mice that overexpress the murine TSG‐14 gene under thecontrol of its own promoter. From eight transgenic founders, twolineages were derived and better characterized: Tg2 and Tg4, carryingtwo and four copies of the transgene, respectively. TSG‐14 transgenicmice were found to be more resistant to the endotoxic shock induced byLPS and to the polymicrobial sepsis caused by cecal ligation andpuncture (CLP). Moreover, macrophages derived from the transgenic miceproduced higher amounts of nitric oxide in response to IFN‐γ,TNF‐α, and LPS as compared with macrophages from wild‐type animals, and the augmented response appears to be the consequence of a higherresponsiveness of transgenic macrophages to IFN‐γ. The data shownhere are the first in vivo evidence of the involvement of TSG‐14 in the inflammatory process and suggest a role for TSG‐14 in thedefense against bacterial infections.


Journal of Immunology | 2002

Lipopolysaccharide-Induced Leukocyte Lipid Body Formation In Vivo: Innate Immunity Elicited Intracellular Loci Involved in Eicosanoid Metabolism

Patricia Pacheco; Fernando A. Bozza; Rachel N. Gomes; Marcelo T. Bozza; Peter F. Weller; Hugo C. Castro-Faria-Neto; Patricia T. Bozza

Lipid bodies are rapidly inducible, specialized cytoplasmic domains for eicosanoid-forming enzyme localization, which we hypothesize to have specific roles in enhanced inflammatory mediator production during pathological conditions, including sepsis. However, little is known about the origins, composition, or functions of lipid bodies in vivo. We show that lipid body numbers were increased in leukocytes from septic patients in comparison with healthy subjects. Analogously, the intrathoracic administration of LPS into mice induced a dose- and time-dependent increase in lipid body numbers. Pretreatment with anti-CD14 or anti-CD11b/CD18 mAb drastically inhibited LPS-induced lipid body formation. Moreover, LPS failed to form lipid bodies in C3H/HeJ (TLR4 mutated) mice, demonstrating a requisite role for LPS receptors in lipid body formation. LPS-induced lipid body formation was also inhibited by the platelet-activating factor-receptor antagonists, suggesting a role for endogenous platelet-activating factor. The eicosanoid-forming enzymes, 5-lipoxygenase and cyclooxygenase-2, were immunolocalized within experimentally induced (LPS in mice) or naturally occurring (septic patients) lipid bodies. The proinflammatory cytokine involved in the pathogenesis of sepsis, TNF-α, was also shown to colocalize within lipid bodies. Prior stimulation of leukocytes to form lipid bodies enhanced the capacity of leukocytes to produce leukotriene B4 and PGE2. In conclusion, our studies indicate that lipid bodies formed after LPS stimulation and sepsis are sites for eicosanoid-forming enzymes and cytokine localization and may develop and function as structurally distinct, intracellular sites for paracrine eicosanoid synthesis during inflammatory conditions.


The FASEB Journal | 2010

Contribution of macrophage migration inhibitory factor to the pathogenesis of dengue virus infection

Iranaia Assunção-Miranda; Flávio A. Amaral; Fernando A. Bozza; Caio T. Fagundes; Lirlandia P. Sousa; Danielle G. Souza; Patricia Pacheco; Giselle Barbosa-Lima; Rachel N. Gomes; Patricia T. Bozza; Andrea T. Da Poian; Mauro M. Teixeira; Marcelo T. Bozza

Dengue fever is an emerging viral disease transmitted by arthropods to humans in tropical countries. Dengue hemorrhagic fever (DHF) is escalating in frequency and mortality rates. Here we studied the involvement of macrophage migration inhibitory factor (MIF) in dengue virus (DENV) infection and its pathogenesis. Patients with DHF had elevated plasma concentrations of MIF. Both leukocytes from these patients and macrophages from healthy donors infected in vitro with DENV showed a substantial amount of MIF within lipid droplets. The secretion of MIF by macrophages and hepatocytes required a productive infection and occurred without an increase in gene transcription or cell death, thus indicating active secretion from preformed stocks. In vivo infection of wild‐type and miFdeficient (Mif−/−) mice demonstrated a role of MIF in dengue pathogenesis. Clinical disease was less severe in Mif−/− mice, and they exhibited a significant delay in lethality, lower viremia, and lower viral load in the spleen than wild‐type mice. This reduction in all parameters of severity on DENV infection in Mif−/− mice correlated with reduced proinflam‐matory cytokine concentrations. These results demon‐strated the contribution of MIF to the pathogenesis of dengue and pointed to a possible beneficial role of neutralizing MIF as an adjunctive therapeutic approach to treat the severe forms of the disease.—Assuncäo‐Miranda, I., Amaral, F. A., Bozza, F. A., Fagundes, C. T., Sousa, L. P., Souza, D. G., Pacheco, P., Barbosa‐Lima, G., Gomes, R. N., Bozza, P. T., Da Poian, A. T., Teixeira, M. M., Bozza, M. T. Contribution of macro‐phage migration inhibitory factor to the pathogenesis of dengue virus infection. FASEB J. 24, 218–228 (2010). www.fasebj.org


Shock | 2005

CALCITONIN GENE-RELATED PEPTIDE INHIBITS LOCAL ACUTE INFLAMMATION AND PROTECTS MICE AGAINST LETHAL ENDOTOXEMIA

Rachel N. Gomes; Hugo C. Castro-Faria-Neto; Patricia T. Bozza; Milena B. P. Soares; Charles B. Shoemaker; John R. David; Marcelo T. Bozza

Calcitonin gene-related peptide (CGRP), a potent vasodilatory peptide present in central and peripheral neurons, is released at inflammatory sites and inhibits several macrophage, dendritic cell, and lymphocyte functions. In the present study, we investigated the role of CGRP in models of local and systemic acute inflammation and on macrophage activation induced by lipopolysaccharide (LPS). Intraperitoneal pretreatment with synthetic CGRP reduces in approximately 50% the number of neutrophils in the blood and into the peritoneal cavity 4 h after LPS injection. CGRP failed to inhibit neutrophil recruitment induced by the direct chemoattractant platelet-activating factor, whereas it significantly inhibited LPS-induced KC generation, suggesting that the effect of CGRP on neutrophil recruitment is indirect, acting on chemokine production by resident cells. Pretreatment of mice with 1 μg of CGRP protects against a lethal dose of LPS. The CGRP-induced protection is receptor mediated because it is completely reverted by the CGRP receptor antagonist, CGRP 8-37. The protective effect of CGRP correlates with an inhibition of TNF-α and an induction of IL-6 and IL-10 in mice sera 90 min after LPS challenge. Finally, CGRP significantly inhibits LPS-induced TNF-α released from mouse peritoneal macrophages. These results suggest that activation of the CGRP receptor on macrophages during acute inflammation could be part of the negative feedback mechanism controlling the extension of acute inflammatory responses.


Journal of Immunology | 2007

Monocyte Chemoattractant Protein-1/CC Chemokine Ligand 2 Controls Microtubule-Driven Biogenesis and Leukotriene B4-Synthesizing Function of Macrophage Lipid Bodies Elicited by Innate Immune Response

Patricia Pacheco; Adriana Vieira-de-Abreu; Rachel N. Gomes; Giselle Barbosa-Lima; Leticia B. Wermelinger; Clarissa M. Maya-Monteiro; Adriana R. Silva; Marcelo T. Bozza; Hugo C. Castro-Faria-Neto; Christianne Bandeira-Melo; Patricia T. Bozza

Lipid bodies (also known as lipid droplets) are emerging as inflammatory organelles with roles in the innate immune response to infections and inflammatory processes. In this study, we identified MCP-1 as a key endogenous mediator of lipid body biogenesis in infection-driven inflammatory disorders and we described the cellular mechanisms and signaling pathways involved in the ability of MCP-1 to regulate the biogenesis and leukotriene B4 (LTB4) synthetic function of lipid bodies. In vivo assays in MCP-1−/− mice revealed that endogenous MCP-1 produced during polymicrobial infection or LPS-driven inflammatory responses has a critical role on the activation of lipid body-assembling machinery, as well as on empowering enzymatically these newly formed lipid bodies with LTB4 synthetic function within macrophages. MCP-1 triggered directly the rapid biogenesis of distinctive LTB4-synthesizing lipid bodies via CCR2-driven ERK- and PI3K-dependent intracellular signaling in in vitro-stimulated macrophages. Disturbance of microtubule organization by microtubule-active drugs demonstrated that MCP-1-induced lipid body biogenesis also signals through a pathway dependent on microtubular dynamics. Besides biogenic process, microtubules control LTB4-synthesizing function of MCP-1-elicited lipid bodies, in part by regulating the compartmentalization of key proteins, as adipose differentiation-related protein and 5-lipoxygenase. Therefore, infection-elicited MCP-1, besides its known CCR2-driven chemotactic function, appears as a key activator of lipid body biogenic and functional machineries, signaling through a microtubule-dependent manner.


Shock | 2005

MECHANISMS OF INCREASED SURVIVAL AFTER LIPOPOLYSACCHARIDE-INDUCED ENDOTOXIC SHOCK IN MICE CONSUMING OLIVE OIL-ENRICHED DIET

Milane S. Leite; Patricia Pacheco; Rachel N. Gomes; Alexandre T. Guedes; Hugo C. Castro-Faria-Neto; Patricia T. Bozza; Vera Lúcia G. Koatz

We examined the impact of dietary fatty acid intake on lipopolysaccharide (LPS)-induced endotoxic shock. C57Bl/6J mice were fed for 6 weeks with a commercial laboratory chow (CC) or with test chows containing 7% (w/w) canola oil (CO), sesame oil (SeO), soybean oil (SO), or virgin olive oil (OO). The increase in body weight and energy consumption were similar for all diets tested. In the sixth week, mice were injected intraperitoneally with 400 μg of bacterial LPS to induce endotoxic shock. LPS induced a massive neutrophil infiltration into the peritoneal cavity and an increase in lipid body (LB) formation in leukocytes recovered from the peritoneal fluid of mice fed with CC, CO, SeO, or SO. In addition, there were increases in prostaglandin E2 (PGE2), leukotriene B4 (LTB4), and cytokines IL-6, IL-10, and MCP-1 in peritoneal lavage, as well as in plasma TNF-α. In contrast, mice fed with OO exhibited reduced neutrophil accumulation and LB formation, and also had lower levels of PGE2, LTB4, MCP-1, and TNF-α. All mice fed with CC, CO, SeO, or SO died within 48 to 72 h after LPS injection. Interestingly, mice fed with the OO diet were resistant to endotoxic shock, with 60% survival at 168 h. These data indicate that intake of OO may have a beneficial role, reducing the magnitude of the inflammatory process triggered by endotoxic shock through modulation of LB formation and of the production of inflammatory mediators.


Shock | 2006

Exogenous platelet-activating factor acetylhydrolase reduces mortality in mice with systemic inflammatory response syndrome and sepsis.

Rachel N. Gomes; Fernando Bozza; Rodrigo T. Amâncio; André Miguel Japiassú; Rosa C. S. Vianna; Andréa P. Larangeira; Juliana M. Gouvêa; Marcela S. Bastos; Guy A. Zimmerman; Diana M. Stafforini; Stephen M. Prescott; Patricia T. Bozza; Hugo C. Castro-Faria-Neto

ABSTRACT Current evidence indicates that dysregulation of the host inflammatory response to infectious agents is central to the mortality of patients with sepsis and in those with systemic inflammatory response syndrome. Strategies to block inflammatory mediators, often with complicated outcomes, are currently being investigated as new adjuvant therapies for sepsis. Here, we determined if administration of recombinant platelet-activating factor (rPAF)-acetylhydrolase (rPAF-AH), an enzyme that inactivates PAF and PAF-like lipids, protects mice from inflammatory injury and death after administration of lipopolysaccharide (LPS) or cecal ligation and puncture (CLP). Administration of rPAF-AH increased plasma PAF-AH activity and reduced mortality in both models. Treatment with rPAF-AH increased peritoneal fluid levels of monocyte chemoattractant protein 1/CCL-2 and decreased interleukin 6 and migration inhibitory factor levels after LPS administration or CLP. Administration of a broad-spectrum antibiotic together with rPAF-AH was more protective than single treatment with either of these agents. The combined treatment was associated with reduced interleukin 6 levels in mice subjected to CLP. We observed acute decreases in plasma PAF-AH activity in mice subjected to CLP or challenged with LPS and in human patients with sepsis. We conclude that alterations in the endogenous PAF-AH contribute to the pathophysiology of sepsis and that administration of exogenous rPAF-AH reduces inflammatory injury and mortality in models relevant to the clinical syndrome. Variations in endogenous PAF-AH activity may potentially account for variable responses to exogenous rPAF-AH in previous clinical trials. Serial measurements of plasma PAF-AH activity in murine models demonstrate dynamic regulation of the endogenous enzyme, potentially explaining the variations in human subjects.


Critical Care | 2009

Intravenous glutamine decreases lung and distal organ injury in an experimental model of abdominal sepsis

Gisele Pinto de Oliveira; Mariana Bg Oliveira; Raquel S. Santos; Letícia D Lima; Cristina M Dias; Alexandre Ab’Saber; Walcy Rosolia Teodoro; Vera Luiza Capelozzi; Rachel N. Gomes; Patricia T. Bozza; Paolo Pelosi; Patricia R.M. Rocco

IntroductionThe protective effect of glutamine, as a pharmacological agent against lung injury, has been reported in experimental sepsis; however, its efficacy at improving oxygenation and lung mechanics, attenuating diaphragm and distal organ injury has to be better elucidated. In the present study, we tested the hypothesis that a single early intravenous dose of glutamine was associated not only with the improvement of lung morpho-function, but also the reduction of the inflammatory process and epithelial cell apoptosis in kidney, liver, and intestine villi.MethodsSeventy-two Wistar rats were randomly assigned into four groups. Sepsis was induced by cecal ligation and puncture surgery (CLP), while a sham operated group was used as control (C). One hour after surgery, C and CLP groups were further randomized into subgroups receiving intravenous saline (1 ml, SAL) or glutamine (0.75 g/kg, Gln). At 48 hours, animals were anesthetized, and the following parameters were measured: arterial oxygenation, pulmonary mechanics, and diaphragm, lung, kidney, liver, and small intestine villi histology. At 18 and 48 hours, Cytokine-Induced Neutrophil Chemoattractant (CINC)-1, interleukin (IL)-6 and 10 were quantified in bronchoalveolar and peritoneal lavage fluids (BALF and PLF, respectively).ResultsCLP induced: a) deterioration of lung mechanics and gas exchange; b) ultrastructural changes of lung parenchyma and diaphragm; and c) lung and distal organ epithelial cell apoptosis. Glutamine improved survival rate, oxygenation and lung mechanics, minimized pulmonary and diaphragmatic changes, attenuating lung and distal organ epithelial cell apoptosis. Glutamine increased IL-10 in peritoneal lavage fluid at 18 hours and bronchoalveolar lavage fluid at 48 hours, but decreased CINC-1 and IL-6 in BALF and PLF only at 18 hours.ConclusionsIn an experimental model of abdominal sepsis, a single intravenous dose of glutamine administered after sepsis induction may modulate the inflammatory process reducing not only the risk of lung injury, but also distal organ impairment. These results suggest that intravenous glutamine may be a potentially beneficial therapy for abdominal sepsis.

Collaboration


Dive into the Rachel N. Gomes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcelo T. Bozza

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Miguel Japiassú

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge