Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel Straussberg is active.

Publication


Featured researches published by Rachel Straussberg.


American Journal of Human Genetics | 2008

A Homozygous Mutation in Human PRICKLE1 Causes an Autosomal-Recessive Progressive Myoclonus Epilepsy-Ataxia Syndrome

Alexander G. Bassuk; Robyn H. Wallace; Aimee Buhr; Andrew R. Buller; Zaid Afawi; Masahito Shimojo; Shingo Miyata; Shan Chen; Pedro Gonzalez-Alegre; Hilary Griesbach; Shu Wu; Marcus Nashelsky; Eszter K. Vladar; Dragana Antic; Polly J. Ferguson; Sebahattin Cirak; Thomas Voit; Matthew P. Scott; Jeffrey D. Axelrod; Christina A. Gurnett; Azhar S. Daoud; Sara Kivity; Miriam Y. Neufeld; Aziz Mazarib; Rachel Straussberg; Simri Walid; Amos D. Korczyn; Diane C. Slusarski; Samuel F. Berkovic; Hatem I. El-Shanti

Progressive myoclonus epilepsy (PME) is a syndrome characterized by myoclonic seizures (lightning-like jerks), generalized convulsive seizures, and varying degrees of neurological decline, especially ataxia and dementia. Previously, we characterized three pedigrees of individuals with PME and ataxia, where either clinical features or linkage mapping excluded known PME loci. This report identifies a mutation in PRICKLE1 (also known as RILP for REST/NRSF interacting LIM domain protein) in all three of these pedigrees. The identified PRICKLE1 mutation blocks the PRICKLE1 and REST interaction in vitro and disrupts the normal function of PRICKLE1 in an in vivo zebrafish overexpression system. PRICKLE1 is expressed in brain regions implicated in epilepsy and ataxia in mice and humans, and, to our knowledge, is the first molecule in the noncanonical WNT signaling pathway to be directly implicated in human epilepsy.


Journal of Medical Genetics | 2005

The CC2D1A, a member of a new gene family with C2 domains, is involved in autosomal recessive non-syndromic mental retardation

Lina Basel-Vanagaite; Revital Attia; Michal Yahav; Russell J. Ferland; Limor Anteki; Christopher A. Walsh; Tsviya Olender; Rachel Straussberg; Nurit Magal; Ellen Taub; Valerie Drasinover; Anna Alkelai; Dani Bercovich; Gideon Rechavi; Amos J. Simon; Mordechai Shohat

Background: The molecular basis of autosomal recessive non-syndromic mental retardation (NSMR) is poorly understood, mostly owing to heterogeneity and absence of clinical criteria for grouping families for linkage analysis. Only two autosomal genes, the PRSS12 gene on chromosome 4q26 and the CRBN on chromosome 3p26, have been shown to cause autosomal recessive NSMR, each gene in only one family. Objective: To identify the gene causing autosomal recessive NSMR on chromosome 19p13.12. Results: The candidate region established by homozygosity mapping was narrowed down from 2.4 Mb to 0.9 Mb on chromosome 19p13.12. A protein truncating mutation was identified in the gene CC2D1A in nine consanguineous families with severe autosomal recessive NSMR. The absence of the wild type protein in the lymphoblastoid cells of the patients was confirmed. CC2D1A is a member of a previously uncharacterised gene family that carries two conserved motifs, a C2 domain and a DM14 domain. The C2 domain is found in proteins which function in calcium dependent phospholipid binding; the DM14 domain is unique to the CC2D1A protein family and its role is unknown. CC2D1A is a putative signal transducer participating in positive regulation of I-κB kinase/NFκB cascade. Expression of CC2D1A mRNA was shown in the embryonic ventricular zone and developing cortical plate in staged mouse embryos, persisting into adulthood, with highest expression in the cerebral cortex and hippocampus. Conclusions: A previously unknown signal transduction pathway is important in human cognitive development.


Archives of Disease in Childhood | 2003

Bacterial susceptibility to oral antibiotics in community acquired urinary tract infection

Dario Prais; Rachel Straussberg; Y Avitzur; Moshe Nussinovitch; L Harel; Jacob Amir

Background: The most common oral antibiotics used in the treatment of urinary tract infection (UTI) are sulphonamides and cephalosporins, but emerging resistance is not unusual. Aims: To assess the change in susceptibility of urinary pathogens to oral antibiotics during the past decade in children with community acquired UTI. Methods: The study sample included two groups of children with a first community acquired UTI: 142 children enrolled in 1991 and 124 enrolled in 1999. UTI was diagnosed by properly collected urine specimen (suprapubic aspiration, transurethral catheterisation, or midstream specimen in circumcised males) in symptomatic patients. Antimicrobial susceptibility of the isolates was compared between the two groups. Results: The pathogens recovered in the two groups were similar: in 1991—E coli 86%, Klebsiella 6%, others 8%; in 1999—E coli 82%, Klebsiella 13%, and others 5%. A slight but generalised decrease in bacterial susceptibility to common antibiotics in the two groups was shown: ampicillin 35% versus 30%; cephalexin 82% versus 63% (p < 0.001); nitrofurantoin 93% versus 92%. The only exception was co-trimoxazole, 60% versus 69%. Overall resistance to antibiotics in 1999 was as follows: ampicillin 70%, cephalexin 37%, co-trimoxazole 31%, amoxicillin-clavulanate 24%, nitrofurantoin 8%, cefuroxime-axetil 5%, nalidixic acid 3%. Conclusions: This study shows a slight but generalised decrease in bacterial susceptibility to common oral antibiotics in the past decade in our population. Empirical initial treatment with co-trimoxazole or cephalexin is inadequate in approximately one third of UTI cases. A larger number of pathogens may be empirically treated with amoxicillin-clavulanate (24% resistance); 95% of organisms are susceptible to cefuroxime-axetil.


Annals of Neurology | 2003

Bilateral Frontoparietal Polymicrogyria: Clinical and Radiological Features in 10 Families with Linkage to Chromosome 16

Bernard S. Chang; Xianhua Piao; Adria Bodell; Lina Basel-Vanagaite; Rachel Straussberg; William B. Dobyns; Bassam Qasrawi; Robin M. Winter; A. Micheil Innes; Thomas Voit; P. Ellen Grant; A. James Barkovich; Christopher A. Walsh

Polymicrogyria is a common malformation of cortical development characterized by an excessive number of small gyri and abnormal cortical lamination. Multiple syndromes of region‐specific bilateral symmetric polymicrogyria have been reported. We previously have described two families with bilateral frontoparietal polymicrogyria (BFPP), an autosomal recessive syndrome that we mapped to a locus on chromosome 16q12‐21. Here, we extend our observations to include 19 patients from 10 kindreds, all linked to the chromosome 16q locus, allowing us to define the clinical and radiological features of BFPP in detail. The syndrome is characterized by global developmental delay of at least moderate severity, seizures, dysconjugate gaze, and bilateral pyramidal and cerebellar signs. Magnetic resonance imaging demonstrated symmetric polymicrogyria affecting the frontoparietal regions most severely, as well as ventriculomegaly, bilateral white matter signal changes, and small brainstem and cerebellar structures. We have refined our genetic mapping and describe two apparent founder haplotypes, one of which is present in two families with BFPP and associated microcephaly. Because 11 of our patients initially were classified as having other malformations, the syndrome of BFPP appears to be more common than previously recognized and may be frequently misdiagnosed. Ann Neurol 2003


Nature Genetics | 2015

A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy

Mikko Muona; Samuel F. Berkovic; Leanne M. Dibbens; Karen L. Oliver; Snezana Maljevic; Marta A. Bayly; Tarja Joensuu; Laura Canafoglia; Silvana Franceschetti; Roberto Michelucci; Salla Markkinen; Sarah E. Heron; Michael S. Hildebrand; Eva Andermann; Frederick Andermann; Antonio Gambardella; Paolo Tinuper; Laura Licchetta; Ingrid E. Scheffer; Chiara Criscuolo; Alessandro Filla; Edoardo Ferlazzo; Jamil Ahmad; Adeel Ahmad; Betül Baykan; Edith Said; Meral Topçu; Patrizia Riguzzi; Mary D. King; Cigdem Ozkara

Progressive myoclonus epilepsies (PMEs) are a group of rare, inherited disorders manifesting with action myoclonus, tonic-clonic seizures and ataxia. We sequenced the exomes of 84 unrelated individuals with PME of unknown cause and molecularly solved 26 cases (31%). Remarkably, a recurrent de novo mutation, c.959G>A (p.Arg320His), in KCNC1 was identified as a new major cause for PME. Eleven unrelated exome-sequenced (13%) and two affected individuals in a secondary cohort (7%) had this mutation. KCNC1 encodes KV3.1, a subunit of the KV3 voltage-gated potassium ion channels, which are major determinants of high-frequency neuronal firing. Functional analysis of the Arg320His mutant channel showed a dominant-negative loss-of-function effect. Ten cases had pathogenic mutations in known PME-associated genes (NEU1, NHLRC1, AFG3L2, EPM2A, CLN6 and SERPINI1). Identification of mutations in PRNP, SACS and TBC1D24 expand their phenotypic spectra to PME. These findings provide insights into the molecular genetic basis of PME and show the role of de novo mutations in this disease entity.


American Journal of Human Genetics | 2002

An Autosomal Recessive Form of Bilateral Frontoparietal Polymicrogyria Maps to Chromosome 16q12.2-21

Xianhua Piao; Lina Basel-Vanagaite; Rachel Straussberg; P. Ellen Grant; Elizabeth W. Pugh; Kim Doheny; Betty Q Doan; Susan E. Hong; Yin Yao Shugart; Christopher A. Walsh

Polymicrogyria is a cerebral cortical malformation that is grossly characterized by excessive cortical folding and microscopically characterized by abnormal cortical layering. Although polymicrogyria appears to have one or more genetic causes, no polymicrogyria loci have been identified. Here we describe the clinical and radiographic features of a new genetic form of polymicrogyria and localize the responsible gene. We studied two consanguineous Palestinian pedigrees with an autosomal recessive form of bilateral frontoparietal polymicrogyria (BFPP), using linkage analysis. Five affected children had moderate-to-severe mental retardation, developmental delay, and esotropia, and four of the five affected children developed seizures. Brain magnetic-resonance imaging revealed polymicrogyria that was most prominent in the frontal and parietal lobes but involved other cortical areas as well. A genomewide linkage screen revealed a single locus that was identical by descent in affected children in both families and showed a single disease-associated haplotype, suggesting a common founder mutation. The locus for BFPP maps to chromosome 16q12.2-21, with a minimal interval of 17 cM. For D16S514, the maximal pooled two-point LOD score was 3.98, and the maximal multipoint LOD score was 4.57. This study provides the first genetic evidence that BFPP is an autosomal recessive disorder and serves as a starting point for the identification of the responsible gene.


Journal of Medical Genetics | 2011

Multiple congenital anomalies-hypotonia-seizures syndrome is caused by a mutation in PIGN

Gal Maydan; Iris Noyman; Adi Har-Zahav; Ziva Ben Neriah; Metsada Pasmanik-Chor; Adva Yeheskel; Adi Albin-Kaplanski; Idit Maya; Nurit Magal; Efrat Birk; Amos J. Simon; Ayelet Halevy; Gideon Rechavi; Mordechai Shohat; Rachel Straussberg; Lina Basel-Vanagaite

Background This study reports on a hitherto undescribed autosomal recessive syndrome characterised by dysmorphic features and multiple congenital anomalies together with severe neurological impairment, chorea and seizures leading to early death, and the identification of a gene involved in the pathogenesis of the disease. Methods Homozygosity mapping was performed using Affymetrix Human Mapping 250k NspI arrays. Sequencing of all coding exons of the candidate genes was performed with primer sets designed using the Primer3 program. Fluorescence activated cell sorting was performed using conjugated antibody to CD59. Staining, acquisition and analysis were performed on a FACSCalibur flow cytometer. Results Using homozygosity mapping, the study mapped the disease locus to 18q21.32–18q22.1 and identified the disease-causing mutation, c.2126G→A (p.Arg709Gln), in PIGN, which encodes glycosylphosphatidylinositol (GPI) ethanolamine phosphate transferase 1, a protein involved in GPI-anchor biosynthesis. Arginine at the position 709 is a highly evolutionarily conserved residue located in the PigN domain. The expression of GPI linked protein CD59 on fibroblasts from patients as compared to that in a control individual showed a 10-fold reduction in expression, confirming the pathogenic consequences of the mutation on GPI dependent protein expression. Conclusions The abundant expression of PIGN in various tissues is compatible with the diverse phenotypic features observed in the patients and with the involvement of multiple body systems. The presence of developmental delay, hypotonia, and epilepsy combined with multiple congenital anomalies, especially anorectal anomalies, should lead a clinician to suspect a GPI deficiency related disorder.


American Journal of Human Genetics | 2009

A Truncating Mutation of TRAPPC9 Is Associated with Autosomal-Recessive Intellectual Disability and Postnatal Microcephaly

Ganeshwaran H. Mochida; Muhammad Mahajnah; Anthony D. Hill; Lina Basel-Vanagaite; Danielle Gleason; R. Sean Hill; Adria Bodell; Moira Crosier; Rachel Straussberg; Christopher A. Walsh

Although autosomal genes are increasingly recognized as important causes of intellectual disability, very few of them are known. We identified a genetic locus for autosomal-recessive nonsyndromic intellectual disability associated with variable postnatal microcephaly through homozygosity mapping of a consanguineous Israeli Arab family. Sequence analysis of genes in the candidate interval identified a nonsense nucleotide change in the gene that encodes TRAPPC9 (trafficking protein particle complex 9, also known as NIBP), which has been implicated in NF-kappaB activation and possibly in intracellular protein trafficking. TRAPPC9 is highly expressed in the postmitotic neurons of the cerebral cortex, and MRI analysis of affected patients shows defects in axonal connectivity. This suggests essential roles of TRAPPC9 in human brain development, possibly through its effect on NF-kappaB activation and protein trafficking in the postmitotic neurons of the cerebral cortex.


Annals of Neurology | 2006

Mutated nup62 causes autosomal recessive infantile bilateral striatal necrosis

Lina Basel-Vanagaite; Liora Muncher; Rachel Straussberg; Metsada Pasmanik-Chor; Michal Yahav; Limor Rainshtein; Christopher A. Walsh; Nurit Magal; Ellen Taub; Valerie Drasinover; Hanna Shalev; Revital Attia; Gideon Rechavi; Amos J. Simon; Mordechai Shohat

The objective of this study was to identify the gene causing autosomal recessive infantile bilateral striatal necrosis.


Journal of Medical Genetics | 2007

Deletions or duplications in KCNQ2 can cause benign familial neonatal seizures

Sarah E. Heron; Kathleen Cox; Bronwyn E. Grinton; Sameer M. Zuberi; Sara Kivity; Zaid Afawi; Rachel Straussberg; Samuel F. Berkovic; Ingrid E. Scheffer; John C. Mulley

Background: Benign familial neonatal seizures are most often caused by mutations in the voltage-gated potassium channel subunit gene KCNQ2. More than 60 mutations have been described in BFNS families, approximately half of which lead to protein truncation. The hypothesis of this study was that deletion or duplication of ⩾1 exons of KCNQ2 could cause BFNS in cases without coding or splicing mutations. Methods: Multiplex ligation-dependent probe amplification (MLPA) was used to test a group of 21 unrelated patients with clinical features consistent with either BFNS, benign familial neonatal–infantile seizures or sporadic neonatal seizures, for exonic deletions and duplications. Results: Three deletions and one duplication mutation were identified in four familial cases and cascade testing of their available family members showed that the mutations segregated with the phenotype in each family. The junction fragment for one of the deletions was amplified by PCR and sequenced to characterise the breakpoint and verify that a deletion had occurred. Conclusions: Submicroscopic deletions or duplications of KCNQ2 are seen in a significant proportion of BFNS families: four of nine (44%) cases previously testing negative for coding or splice site mutation by sequencing KCNQ2 and KCNQ3. MLPA is an efficient second-tier testing strategy for KCNQ2 to identify pathogenic intragenic mutations not detectable by conventional DNA sequencing methods.

Collaboration


Dive into the Rachel Straussberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher A. Walsh

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge