Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel Toth is active.

Publication


Featured researches published by Rachel Toth.


The EMBO Journal | 2004

LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1

Jose M. Lizcano; Olga Göransson; Rachel Toth; Maria Deak; Nick A. Morrice; Jérôme Boudeau; Simon A. Hawley; Lina Udd; Tomi P. Mäkelä; D. Grahame Hardie; Dario R. Alessi

We recently demonstrated that the LKB1 tumour suppressor kinase, in complex with the pseudokinase STRAD and the scaffolding protein MO25, phosphorylates and activates AMP‐activated protein kinase (AMPK). A total of 12 human kinases (NUAK1, NUAK2, BRSK1, BRSK2, QIK, QSK, SIK, MARK1, MARK2, MARK3, MARK4 and MELK) are related to AMPK. Here we demonstrate that LKB1 can phosphorylate the T‐loop of all the members of this subfamily, apart from MELK, increasing their activity >50‐fold. LKB1 catalytic activity and the presence of MO25 and STRAD are required for activation. Mutation of the T‐loop Thr phosphorylated by LKB1 to Ala prevented activation, while mutation to glutamate produced active forms of many of the AMPK‐related kinases. Activities of endogenous NUAK2, QIK, QSK, SIK, MARK1, MARK2/3 and MARK4 were markedly reduced in LKB1‐deficient cells. Neither LKB1 activity nor that of AMPK‐related kinases was stimulated by phenformin or AICAR, which activate AMPK. Our results show that LKB1 functions as a master upstream protein kinase, regulating AMPK‐related kinases as well as AMPK. Between them, these kinases may mediate the physiological effects of LKB1, including its tumour suppressor function.


Biochemical Journal | 2010

Bioinformatic and experimental survey of 14-3-3-binding sites

Catherine Johnson; Sandra Crowther; Margaret J. Stafford; David G. Campbell; Rachel Toth; Carol MacKintosh

More than 200 phosphorylated 14-3-3-binding sites in the literature were analysed to define 14-3-3 specificities, identify relevant protein kinases, and give insights into how cellular 14-3-3/phosphoprotein networks work. Mode I RXX(pS/pT)XP motifs dominate, although the +2 proline residue occurs in less than half, and LX(R/K)SX(pS/pT)XP is prominent in plant 14-3-3-binding sites. Proline at +1 is rarely reported, and such motifs did not stand up to experimental reanalysis of human Ndel1. Instead, we discovered that 14-3-3 interacts with two residues that are phosphorylated by basophilic kinases and located in the DISC1 (disrupted-in-schizophrenia 1)-interacting region of Ndel1 that is implicated in cognitive disorders. These data conform with the general findings that there are different subtypes of 14-3-3-binding sites that overlap with the specificities of different basophilic AGC (protein kinase A/protein kinase G/protein kinase C family) and CaMK (Ca2+/calmodulin-dependent protein kinase) protein kinases, and a 14-3-3 dimer often engages with two tandem phosphorylated sites, which is a configuration with special signalling, mechanical and evolutionary properties. Thus 14-3-3 dimers can be digital logic gates that integrate more than one input to generate an action, and coincidence detectors when the two binding sites are phosphorylated by different protein kinases. Paired sites are generally located within disordered regions and/or straddle either side of functional domains, indicating how 14-3-3 dimers modulate the conformations and/or interactions of their targets. Finally, 14-3-3 proteins bind to members of several multi-protein families. Two 14-3-3-binding sites are conserved across the class IIa histone deacetylases, whereas other protein families display differential regulation by 14-3-3s. We speculate that 14-3-3 dimers may have contributed to the evolution of such families, tailoring regulatory inputs to different physiological demands.


BMC Cell Biology | 2006

Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL.

Andrew Macdonald; David G. Campbell; Rachel Toth; Hilary McLauchlan; C. James Hastie; J. Simon C. Arthur

BackgroundPim-1, 2 and 3 are a group of enzymes related to the calcium calmodulin family of protein kinases. Over-expression of Pim-1 and Pim-2 in mice promotes the development of lymphomas, and up-regulation of Pim expression has been observed in several human cancers.ResultsHere we show that the pim kinases are constitutively active when expressed in HEK-293 cells and are able to phosphorylate the Bcl-2 family member Bad on three residues, Ser112, Ser136 and Ser155 in vitro and in cells. In vitro mapping showed that Pim-2 predominantly phosphorylated Ser112, while Pim-1 phosphorylated Ser112, but also Ser136 and Ser155 at a reduced rate compared to Ser112. Pim-3 was found to be the least specific for Ser112, and the most effective at phosphorylating Ser136 and Ser155. Pim-3 was also able to phosphorylate other sites in Bad in vitro, including Ser170, another potential in vivo site. Mutation of Ser136 to alanine prevented the phosphorylation of Ser112 and Ser155 by Pim kinases in HEK-293 cells, suggesting that this site must be phosphorylated first in order to make the other sites accessible. Pim phosphorylation of Bad was also found to promote the 14-3-3 binding of Bad and block its association with Bcl-XL.ConclusionAll three Pim kinase family members predominantly phosphorylate Bad on Ser112 and in addition are capable of phosphorylating Bad on multiple sites associated with the inhibition of the pro-apoptotic function of Bad in HEK-293 cells. This would be consistent with the proposed function of Pim kinases in promoting cell proliferation and preventing cell death.


Biochemical Journal | 2008

Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK activators

Shuai Chen; Jane Murphy; Rachel Toth; David G. Campbell; Nick A. Morrice; Carol MacKintosh

AS160 (Akt substrate of 160 kDa) and TBC1D1 are related RabGAPs (Rab GTPase-activating proteins) implicated in regulating the trafficking of GLUT4 (glucose transporter 4) storage vesicles to the cell surface. All animal species examined contain TBC1D1, whereas AS160 evolved with the vertebrates. TBC1D1 has two clusters of phosphorylated residues, either side of the second PTB (phosphotyrosine-binding domain). Each cluster contains a 14-3-3-binding site. When AMPK (AMP-activated protein kinase) is activated in HEK (human embryonic kidney)-293 cells, 14-3-3s bind primarily to pSer237 (where pSer is phosphorylated serine) in TBC1D1, whereas 14-3-3 binding depends primarily on pThr596 (where pThr is phosphorylated threonine) in cells stimulated with IGF-1 (insulin-like growth factor 1), EGF (epidermal growth factor) and PMA; and both pSer237 and pThr596 contribute to 14-3-3 binding in cells stimulated with forskolin. In HEK-293 cells, LY294002 inhibits phosphorylation of Thr596 of TBC1D1, and promotes phosphorylation of AMPK and Ser237 of TBC1D1. In vitro phosphorylation experiments indicated regulatory interactions among phosphorylated sites, for example phosphorylation of Ser235 prevents subsequent phosphorylation of Ser237. In rat L6 myotubes, endogenous TBC1D1 is strongly phosphorylated on Ser237 and binds to 14-3-3s in response to the AMPK activators AICAR (5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside), phenformin and A-769662, whereas insulin promotes phosphorylation of Thr596 but not 14-3-3 binding. In contrast, AS160 is phosphorylated on its 14-3-3-binding sites (Ser341 and Thr642) and binds to 14-3-3s in response to insulin, but not A-769662, in L6 cells. These findings suggest that TBC1D1 and AS160 may have complementary roles in regulating vesicle trafficking in response to insulin and AMPK-activating stimuli in skeletal muscle.


Biochemical Journal | 2007

Regulation of multisite phosphorylation and 14-3-3 binding of AS160 in response to IGF-1, EGF, PMA and AICAR.

Kathryn M. Geraghty; Shuai Chen; Jean Harthill; Adel F. M. Ibrahim; Rachel Toth; Nick A. Morrice; Franck Vandermoere; Greg B. G. Moorhead; D. Grahame Hardie; Carol MacKintosh

AS160 (Akt substrate of 160 kDa) mediates insulin-stimulated GLUT4 (glucose transporter 4) translocation, but is widely expressed in insulin-insensitive tissues lacking GLUT4. Having isolated AS160 by 14-3-3-affinity chromatography, we found that binding of AS160 to 14-3-3 isoforms in HEK (human embryonic kidney)-293 cells was induced by IGF-1 (insulin-like growth factor-1), EGF (epidermal growth factor), PMA and, to a lesser extent, AICAR (5-aminoimidazole-4-carboxamide-1-b-D-ribofuranoside). AS160-14-3-3 interactions were stabilized by chemical cross-linking and abolished by dephosphorylation. Eight residues on AS160 (Ser318, Ser341, Thr568, Ser570, Ser588, Thr642, Ser666 and Ser751) were differentially phosphorylated in response to IGF-1, EGF, PMA and AICAR. The binding of 14-3-3 proteins to HA-AS160 (where HA is haemagglutinin) was markedly decreased by mutation of Thr642 and abolished in a Thr642Ala/Ser341Ala double mutant. The AGC (protein kinase A/protein kinase G/protein kinase C-family) kinases RSK1 (p90 ribosomal S6 kinase 1), SGK1 (serum- and glucocorticoid-induced protein kinase 1) and PKB (protein kinase B) displayed distinct signatures of AS160 phosphorylation in vitro: all three kinases phosphorylated Ser318, Ser588 and Thr642; RSK1 also phosphorylated Ser341, Ser751 and to a lesser extent Thr568; and SGK1 phosphorylated Thr568 and Ser751. AMPK (AMP-activated protein kinase) preferentially phosphorylated Ser588, with less phosphorylation of other sites. In cells, the IGF-1-stimulated phosphorylations, and certain EGF-stimulated phosphorylations, were inhibited by PI3K (phosphoinositide 3-kinase) inhibitors, whereas the RSK inhibitor BI-D1870 inhibited the PMA-induced phosphorylations. The expression of LKB1 in HeLa cells and the use of AICAR in HEK-293 cells promoted phosphorylation of Ser588, but only weak Ser341 and Thr642 phosphorylations and binding to 14-3-3s. Paradoxically however, phenformin activated AMPK without promoting AS160 phosphorylation. The IGF-1-induced phosphorylation of the novel phosphorylated Ser666-Pro site was suppressed by AICAR, and by combined mutation of a TOS (mTOR signalling)-like sequence (FEMDI) and rapamycin. Thus, although AS160 is a common target of insulin, IGF-1, EGF, PMA and AICAR, these stimuli induce distinctive patterns of phosphorylation and 14-3-3 binding, mediated by at least four protein kinases.


EMBO Reports | 2013

Loss of iron triggers PINK1/Parkin‐independent mitophagy

George F.G. Allen; Rachel Toth; John James; Ian G. Ganley

In this study, we develop a simple assay to identify mitophagy inducers on the basis of the use of fluorescently tagged mitochondria that undergo a colour change on lysosomal delivery. Using this assay, we identify iron chelators as a family of compounds that generate a strong mitophagy response. Iron chelation‐induced mitophagy requires that cells undergo glycolysis, but does not require PINK1 stabilization or Parkin activation, and occurs in primary human fibroblasts as well as those isolated from a Parkinsons patient with Parkin mutations. Thus, we have identified and characterized a mitophagy pathway, the induction of which could prove beneficial as a potential therapy for several neurodegenerative diseases in which mitochondrial clearance is advantageous.


Journal of Immunology | 2013

PGE 2 Induces Macrophage IL-10 Production and a Regulatory-like Phenotype via a Protein Kinase A-SIK-CRTC3 Pathway

Kirsty F. MacKenzie; Kristopher Clark; Shaista Naqvi; Victoria A. McGuire; Gesa Nöehren; Yosua Kristariyanto; Mirjam W. M. Van Den Bosch; Manikhandan Mudaliar; Pierre C McCarthy; Michael J. Pattison; Patrick G. A. Pedrioli; Geoff J. Barton; Rachel Toth; Alan R. Prescott; J. Simon C. Arthur

The polarization of macrophages into a regulatory-like phenotype and the production of IL-10 plays an important role in the resolution of inflammation. We show in this study that PGE2, in combination with LPS, is able to promote an anti-inflammatory phenotype in macrophages characterized by high expression of IL-10 and the regulatory markers SPHK1 and LIGHT via a protein kinase A–dependent pathway. Both TLR agonists and PGE2 promote the phosphorylation of the transcription factor CREB on Ser133. However, although CREB regulates IL-10 transcription, the mutation of Ser133 to Ala in the endogenous CREB gene did not prevent the ability of PGE2 to promote IL-10 transcription. Instead, we demonstrate that protein kinase A regulates the phosphorylation of salt-inducible kinase 2 on Ser343, inhibiting its ability to phosphorylate CREB-regulated transcription coactivator 3 in cells. This in turn allows CREB-regulated transcription coactivator 3 to translocate to the nucleus where it serves as a coactivator with the transcription factor CREB to induce IL-10 transcription. In line with this, we find that either genetic or pharmacological inhibition of salt-inducible kinases mimics the effect of PGE2 on IL-10 production.


FEBS Letters | 2005

Identification of the sucrose non-fermenting related kinase SNRK, as a novel LKB1 substrate

Mahaboobi Jaleel; Andrew McBride; Jose M. Lizcano; Maria Deak; Rachel Toth; Nick A. Morrice; Dario R. Alessi

Recent work has shown that the LKB1 tumour suppressor protein kinase phosphorylates and activates protein kinases belonging to the AMP activated kinase (AMPK) subfamily. In this study, we identify the sucrose non‐fermenting protein (SNF1)‐related kinase (SNRK), a largely unstudied AMPK subfamily member, as a novel substrate for LKB1. We demonstrate that LKB1 activates SNRK by phosphorylating the T‐loop residue (Thr173), and that the LKB1 regulatory subunits STRAD and MO25 are required for LKB1 to activate SNRK. We find that SNRK is not active when expressed in HeLa cells that lack expression of LKB1, and its activity is restored by expression of wild type LKB1, but not catalytically deficient LKB1. We also present evidence that two other AMPK‐related kinases more distantly related to AMPK than SNRK, namely NIM1 and testis‐specific serine/threonine kinase‐1 (TSSK1) are not substrates for LKB1. Tissue distribution analysis indicates that SNRK protein is mainly expressed in testis, similar to TSSK isoforms, whereas NIM1 is more widely expressed. These results provide evidence that SNRK could mediate some of the physiological effects of LKB1.


Molecular Cell | 2013

Cooperative Control of Holliday Junction Resolution and DNA Repair by the SLX1 and MUS81-EME1 Nucleases

Dennis Castor; Nidhi Nair; Anne-Cécile Déclais; Christophe Lachaud; Rachel Toth; Thomas Macartney; David M. J. Lilley; J. Simon C. Arthur; John Rouse

Summary Holliday junctions (HJs) are X-shaped DNA structures that arise during homologous recombination, which must be removed to enable chromosome segregation. The SLX1 and MUS81-EME1 nucleases can both process HJs in vitro, and they bind in close proximity on the SLX4 scaffold, hinting at possible cooperation. However, the cellular roles of mammalian SLX1 are not yet known. Here, we use mouse genetics and structure function analysis to investigate SLX1 function. Disrupting the murine Slx1 and Slx4 genes revealed that they are essential for HJ resolution in mitotic cells. Moreover, SLX1 and MUS81-EME1 act together to resolve HJs in a manner that requires tethering to SLX4. We also show that SLX1, like MUS81-EME1, is required for repair of DNA interstrand crosslinks, but this role appears to be independent of HJ cleavage, at least in mouse cells. These findings shed light on HJ resolution in mammals and on maintenance of genome stability.


Journal of Experimental Medicine | 2011

Polyubiquitin binding to ABIN1 is required to prevent autoimmunity

Sambit Nanda; Ram K C Venigalla; Alban Ordureau; Janet C. Patterson-Kane; David W. Powell; Rachel Toth; J. Simon C. Arthur; Philip Cohen

The polyubiquitin-binding domain of ABIN1 limits TLR-induced MyD88 signaling to prevent spontaneous autoimmunity in mice.

Collaboration


Dive into the Rachel Toth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge