Rachel Totoritis
GlaxoSmithKline
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rachel Totoritis.
ACS Medicinal Chemistry Letters | 2013
Philip A. Harris; Deepak Bandyopadhyay; Scott B. Berger; Nino Campobasso; Carol Capriotti; Julie A. Cox; Lauren Dare; Joshua N. Finger; Sandra J. Hoffman; Kirsten M. Kahler; Ruth Lehr; John D. Lich; Rakesh Nagilla; Robert T. Nolte; Michael T. Ouellette; Christina S. Pao; Michelle Schaeffer; Angela Smallwood; Helen H. Sun; Barbara A. Swift; Rachel Totoritis; Paris Ward; Robert W. Marquis; John Bertin; Peter J. Gough
Potent inhibitors of RIP1 kinase from three distinct series, 1-aminoisoquinolines, pyrrolo[2,3-b]pyridines, and furo[2,3-d]pyrimidines, all of the type II class recognizing a DLG-out inactive conformation, were identified from screening of our in-house kinase focused sets. An exemplar from the furo[2,3-d]pyrimidine series showed a dose proportional response in protection from hypothermia in a mouse model of TNFα induced lethal shock.
Journal of Medicinal Chemistry | 2017
Philip A. Harris; Scott B. Berger; Jae U. Jeong; Rakesh Nagilla; Deepak Bandyopadhyay; Nino Campobasso; Carol Capriotti; Julie A. Cox; Lauren Dare; Xiaoyang Dong; Patrick M. Eidam; Joshua N. Finger; Sandra J. Hoffman; James Kang; Viera Kasparcova; Bryan W. King; Ruth Lehr; Yunfeng Lan; Lara Kathryn Leister; John D. Lich; Thomas T. MacDonald; Nathan A. Miller; Michael T. Ouellette; Christina S. Pao; Attiq Rahman; Michael Reilly; Alan R. Rendina; Elizabeth J. Rivera; Michelle Schaeffer; Clark A. Sehon
RIP1 regulates necroptosis and inflammation and may play an important role in contributing to a variety of human pathologies, including immune-mediated inflammatory diseases. Small-molecule inhibitors of RIP1 kinase that are suitable for advancement into the clinic have yet to be described. Herein, we report our lead optimization of a benzoxazepinone hit from a DNA-encoded library and the discovery and profile of clinical candidate GSK2982772 (compound 5), currently in phase 2a clinical studies for psoriasis, rheumatoid arthritis, and ulcerative colitis. Compound 5 potently binds to RIP1 with exquisite kinase specificity and has excellent activity in blocking many TNF-dependent cellular responses. Highlighting its potential as a novel anti-inflammatory agent, the inhibitor was also able to reduce spontaneous production of cytokines from human ulcerative colitis explants. The highly favorable physicochemical and ADMET properties of 5, combined with high potency, led to a predicted low oral dose in humans.
Nature Chemical Biology | 2014
Mary Ann Hardwicke; Alan R. Rendina; Shawn P. Williams; Michael L. Moore; Liping Wang; Julie A Krueger; Ramona Plant; Rachel Totoritis; Guofeng Zhang; Jacques Briand; William Burkhart; Kristin K. Brown; Cynthia A. Parrish
Human fatty acid synthase (hFAS) is a complex, multifunctional enzyme that is solely responsible for the de novo synthesis of long chain fatty acids. hFAS is highly expressed in a number of cancers, with low expression observed in most normal tissues. Although normal tissues tend to obtain fatty acids from the diet, tumor tissues rely on de novo fatty acid synthesis, making hFAS an attractive metabolic target for the treatment of cancer. We describe here the identification of GSK2194069, a potent and specific inhibitor of the β-ketoacyl reductase (KR) activity of hFAS; the characterization of its enzymatic and cellular mechanism of action; and its inhibition of human tumor cell growth. We also present the design of a new protein construct suitable for crystallography, which resulted in what is to our knowledge the first co-crystal structure of the human KR domain and includes a bound inhibitor.
Journal of Medicinal Chemistry | 2016
Pamela A. Haile; Bartholomew J. Votta; Robert W. Marquis; Michael Jonathan Bury; John F. Mehlmann; Robert R. Singhaus; Adam K. Charnley; Ami S. Lakdawala; David B. Lipshutz; Biva Desai; Barbara Swift; Carol Capriotti; Scott B. Berger; Mukesh K. Mahajan; Michael Reilly; Elizabeth J. Rivera; Helen H. Sun; Rakesh Nagilla; Allison M. Beal; Joshua N. Finger; Michael N. Cook; Bryan W. King; Michael T. Ouellette; Rachel Totoritis; Maria Pierdomenico; Anna Negroni; Laura Stronati; Salvatore Cucchiara; Bartłomiej Ziółkowski; Anna Vossenkämper
RIP2 kinase is a central component of the innate immune system and enables downstream signaling following activation of the pattern recognition receptors NOD1 and NOD2, leading to the production of inflammatory cytokines. Recently, several inhibitors of RIP2 kinase have been disclosed that have contributed to the fundamental understanding of the role of RIP2 in this pathway. However, because they lack either broad kinase selectivity or strong affinity for RIP2, these tools have only limited utility to assess the role of RIP2 in complex environments. We present, herein, the discovery and pharmacological characterization of GSK583, a next-generation RIP2 inhibitor possessing exquisite selectivity and potency. Having demonstrated the pharmacological precision of this tool compound, we report its use in elucidating the role of RIP2 kinase in a variety of in vitro, in vivo, and ex vivo experiments, further clarifying our understanding of the role of RIP2 in NOD1 and NOD2 mediated disease pathogenesis.
Journal of Medicinal Chemistry | 2015
Brian G. Lawhorn; Joanne Philp; Yongdong Zhao; Christopher Louer; Marlys Hammond; Mui Cheung; Harvey E. Fries; Alan P. Graves; Lisa M. Shewchuk; Liping Wang; Joshua E. Cottom; Hongwei Qi; Huizhen Zhao; Rachel Totoritis; Guofeng Zhang; Benjamin J. Schwartz; Hu Li; Sharon Sweitzer; Dennis Alan Holt; Gregory J. Gatto; Lara S. Kallander
A series of cardiac troponin I-interacting kinase (TNNI3K) inhibitors arising from 3-((9H-purin-6-yl)amino)-N-methyl-benzenesulfonamide (1) is disclosed along with fundamental structure-function relationships that delineate the role of each element of 1 for TNNI3K recognition. An X-ray structure of 1 bound to TNNI3K confirmed its Type I binding mode and is used to rationalize the structure-activity relationship and employed to design potent, selective, and orally bioavailable TNNI3K inhibitors. Identification of the 7-deazapurine heterocycle as a superior template (vs purine) and its elaboration by introduction of C4-benzenesulfonamide and C7- and C8-7-deazapurine substituents produced compounds with substantial improvements in potency (>1000-fold), general kinase selectivity (10-fold improvement), and pharmacokinetic properties (>10-fold increase in poDNAUC). Optimal members of the series have properties suitable for use in in vitro and in vivo experiments aimed at elucidating the role of TNNI3K in cardiac biology and serve as leads for developing novel heart failure medicines.
Assay and Drug Development Technologies | 2009
Hu Li; Rachel Totoritis; Leng A. Lor; Benjamin J. Schwartz; Peter Caprioli; Anthony J. Jurewicz; Guofeng Zhang
Identification of kinase, especially protein kinase, modulators through high-throughput screening (HTS) has become a common strategy for drug discovery programs in both academia and the pharmaceutical industry. There are a number of platform technologies that can be used for measuring kinase activities. However, there is none that fits all criteria in terms of sensitivity, ATP tolerance, robustness, throughput, and cost-effectiveness. Therefore, development of a homogeneous and robust HTS assay for some kinase targets is still challenging. We recently evaluated the ADP-Glo assay from Promega. This is a homogeneous, signal increase assay that measures ADP production from a kinase reaction by coupled enzymes that first convert ADP to ATP and subsequently quantifies ATP using luciferase in the presence of luciferin. Since the unused ATP in the reaction is depleted prior to ADP to ATP conversion, this assay shows excellent sensitivity over a wide range of ATP concentrations. We demonstrate that ADP-Glo assay can be used for 2 kinase targets that belong to different classes, and compare the results of compound profiling with SPA and FP assay technologies.
Molecular Pharmacology | 2015
Nestor O. Concha; Angela Smallwood; William G. Bonnette; Rachel Totoritis; Guofeng Zhang; Kelly Federowicz; Jingsong Yang; Hongwei Qi; Stephanie Chen; Nino Campobasso; Anthony E. Choudhry; Leanna E. Shuster; Karen A. Evans; Jeff Ralph; Sharon Sweitzer; Dirk A. Heerding; Carolyn A Buser; Dai-Shi Su; Maurice P. Deyoung
Activation of the inositol-requiring enzyme-1 alpha (IRE1α) protein caused by endoplasmic reticulum stress results in the homodimerization of the N-terminal endoplasmic reticulum luminal domains, autophosphorylation of the cytoplasmic kinase domains, and conformational changes to the cytoplasmic endoribonuclease (RNase) domains, which render them functional and can lead to the splicing of X-box binding protein 1 (XBP 1) mRNA. Herein, we report the first crystal structures of the cytoplasmic portion of a human phosphorylated IRE1α dimer in complex with (R)-2-(3,4-dichlorobenzyl)-N-(4-methylbenzyl)-2,7-diazaspiro(4.5)decane-7-carboxamide, a novel, IRE1α-selective kinase inhibitor, and staurosporine, a broad spectrum kinase inhibitor. (R)-2-(3,4-dichlorobenzyl)-N-(4-methylbenzyl)-2,7-diazaspiro(4.5)decane-7-carboxamide inhibits both the kinase and RNase activities of IRE1α. The inhibitor interacts with the catalytic residues Lys599 and Glu612 and displaces the kinase activation loop to the DFG-out conformation. Inactivation of IRE1α RNase activity appears to be caused by a conformational change, whereby the αC helix is displaced, resulting in the rearrangement of the kinase domain-dimer interface and a rotation of the RNase domains away from each other. In contrast, staurosporine binds at the ATP-binding site of IRE1α, resulting in a dimer consistent with RNase active yeast Ire1 dimers. Activation of IRE1α RNase activity appears to be promoted by a network of hydrogen bond interactions between highly conserved residues across the RNase dimer interface that place key catalytic residues poised for reaction. These data implicate that the intermolecular interactions between conserved residues in the RNase domain are required for activity, and that the disruption of these interactions can be achieved pharmacologically by small molecule kinase domain inhibitors.
Biochemistry | 2011
Rachel Totoritis; Chaya Duraiswami; Amy N. Taylor; John J. Kerrigan; Nino Campobasso; Katherine J. Smith; Paris Ward; Bryan W. King; Monique Murrayz-Thompson; Amber Jones; Glenn S. Van Aller; Kelly Aubart; Magdalena Zalacain; Sara H. Thrall; Thomas D. Meek; Benjamin J. Schwartz
The continual bacterial adaptation to antibiotics creates an ongoing medical need for the development of novel therapeutics. Polypeptide deformylase (PDF) is a highly conserved bacterial enzyme, which is essential for viability. It has previously been shown that PDF inhibitors represent a promising new area for the development of antimicrobial agents, and that many of the best PDF inhibitors demonstrate slow, time-dependent binding. To improve our understanding of the mechanistic origin of this time-dependent inhibition, we examined in detail the kinetics of PDF catalysis and inhibition by several different PDF inhibitors. Varying pH and solvent isotope led to clear changes in time-dependent inhibition parameters, as did inclusion of NaCl, which binds to the active site metal of PDF. Quantitative analysis of these results demonstrated that the observed time dependence arises from slow binding of the inhibitors to the active site metal. However, we also found several metal binding inhibitors that exhibited rapid, non-time-dependent onset of inhibition. By a combination of structural and chemical modification studies, we show that metal binding is only slow when the rest of the inhibitor makes optimal hydrogen bonds within the subsites of PDF. Both of these interactions between the inhibitor and enzyme were found to be necessary to observe time-dependent inhibition, as elimination of either leads to its loss.
bioRxiv | 2018
Rodrigo F Ortiz-Meoz; Liping Wang; Rosalie Matico; Anna Rutkowska; Martha De la Rosa; Sabrina Bédard; Robert Midgett; Katrin Strohmer; Douglas Thomson; Cunyu Zhang; Jeffrey Guss; Rachel Totoritis; Thomas G. Consler; Nino Campobasso; David Taylor; Tia S. Lewis; Kurt Weaver; Marcel Mülbaier; John Seal; Richard M. Dunham; Wieslaw M. Kazmierski; David Favre; Giovanna Bergamini; Lisa M. Shewchuk; Alan R. Rendina; Guofeng Zhang
Indoleamine-2,3-dioxygenase 1 (IDO1) is a heme-containing enzyme that catalyzes the rate-limiting step in the kynurenine pathway of tryptophan (TRP) metabolism. As an inflammation-induced immunoregulatory enzyme, pharmacological inhibition of IDO1 activity is currently being pursued as a potential therapeutic tool for the treatment of cancer and other disease states. As such, a detailed understanding of the mechanism of action of established and novel IDO1 inhibitors remains of great interest. Comparison of a newly-developed IDO1 inhibitor (GSK5628) to the existing best-in-class compound, epacadostat (Incyte), allows us to report on a novel inhibition mechanism for IDO1. Here, we demonstrate that GSK5628 inhibits IDO1 by competing with heme for binding to a heme-free conformation of the enzyme (apo-IDO1) while epacadostat coordinates its binding with the iron atom of the IDO1 heme cofactor. Comparison of these two compounds in cellular systems reveals a long-lasting inhibitory effect of GSK5628, undescribed for other known IDO1 inhibitors. Detailed characterization of this novel binding mechanism for IDO1 inhibition may help design superior inhibitors or may confer a unique competitive advantage over other IDO1 inhibitors vis-a-vis specificity and pharmacokinetic parameters.Indoleamine-2,3-dioxygenase 1 (IDO1) is a heme-containing enzyme that catalyzes the rate-limiting step in the kynurenine pathway of tryptophan (TRP) metabolism. As an inflammation-induced immunoregulatory enzyme, pharmacological inhibition of IDO1 activity is currently being pursued as a potential therapeutic tool for the treatment of cancer and other disease states. As such, a detailed understanding of the mechanism of action of established and novel IDO1 inhibitors remains of great interest. Comparison of a newly-developed IDO1 inhibitor (GSK5628) to the existing best-in-class compound, epacadostat (Incyte), allows us to report on a unique inhibition mechanism for IDO1. Here, we demonstrate that GSK5628 inhibits IDO1 by competing with heme for binding to a heme-free conformation of the enzyme (apo-IDO1) while epacadostat coordinates its binding with the iron atom of the IDO1 heme cofactor. Comparison of these two compounds in cellular systems reveals a long-lasting inhibitory effect of GSK5628, undescribed for other known IDO1 inhibitors. Detailed characterization of this apo-binding mechanism for IDO1 inhibition may help design superior inhibitors or may confer a unique competitive advantage over other IDO1 inhibitors vis-à-vis specificity and pharmacokinetic parameters.
ACS Medicinal Chemistry Letters | 2018
Pamela A. Haile; Linda N. Casillas; Michael Jonathan Bury; John F. Mehlmann; Robert R. Singhaus; Adam Kenneth Charnley; Terry Vincent Hughes; Michael P. DeMartino; Gren Z. Wang; Joseph J. Romano; Xiaoyang Dong; Nikolay V. Plotnikov; Ami S. Lakdawala; Bartholomew J. Votta; David B. Lipshutz; Biva Desai; Barbara Swift; Carol Capriotti; Scott B. Berger; Mukesh K. Mahajan; Michael Reilly; Elizabeth J. Rivera; Helen H. Sun; Rakesh Nagilla; Carol LePage; Michael T. Ouellette; Rachel Totoritis; Brian T. Donovan; Barry S. Brown; Khuram W. Chaudhary
RIP2 kinase was recently identified as a therapeutic target for a variety of autoimmune diseases. We have reported previously a selective 4-aminoquinoline-based RIP2 inhibitor GSK583 and demonstrated its effectiveness in blocking downstream NOD2 signaling in cellular models, rodent in vivo models, and human ex vivo disease models. While this tool compound was valuable in validating the biological pathway, it suffered from activity at the hERG ion channel and a poor PK/PD profile thereby limiting progression of this analog. Herein, we detail our efforts to improve both this off-target liability as well as the PK/PD profile of this series of inhibitors through modulation of lipophilicity and strengthening hinge binding ability. These efforts have led to inhibitor 7, which possesses high binding affinity for the ATP pocket of RIP2 (IC50 = 1 nM) and inhibition of downstream cytokine production in human whole blood (IC50 = 10 nM) with reduced hERG activity (14 μM).