Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel W. Martin is active.

Publication


Featured researches published by Rachel W. Martin.


Journal of Magnetic Resonance | 2003

Preparation of protein nanocrystals and their characterization by solid state NMR.

Rachel W. Martin; Kurt W. Zilm

Preparation of proteins in their crystalline state has been found to be important in producing stable therapeutic protein formulations, cross-linked enzyme crystals for application in industrial processes, generating novel porous media for separations, and of course in structure elucidation. Of these applications only X-ray crystallography requires large crystals, defined here as being crystals 100s of microns or greater in size. Smaller crystals have attractive attributes in many instances, and are just as useful in structure determination by solid state NMR (ssNMR) as are large crystals. In this paper we outline a simple set of procedures for preparing nanocrystalline protein samples for ssNMR or other applications and describe the characterization of their crystallinity by ssNMR and X-ray powder diffraction. The approach is demonstrated in application to five different proteins: ubiquitin, lysozyme, ribonuclease A, streptavidin, and cytochrome c. In all instances the nanocrystals produced are found to be highly crystalline as judged by natural abundance 13C ssNMR and optical and electron microscopy. We show for ubiquitin that nanocrystals prepared by rapid batch crystallization yield equivalent 13C ssNMR spectra to those of larger X-ray diffraction quality crystals. Single crystal and powder X-ray diffraction measurements are made to compare the degree of order present in polycrystalline, nanocrystalline, and lyophilized ubiquitin. Solid state 13C NMR is also used to show that ubiquitin nanocrystals are thermally robust, giving no indication of loss of local order after repeated temperature cycling between liquid nitrogen and room temperature. The methods developed are rapid and should scale well from the tenths of milligram to multi-gram scales, and as such should find wide utility in the preparation of protein nanocrystals for applications in catalysis, separations, and especially in sample preparation for structural studies using ssNMR.


Review of Scientific Instruments | 2003

Design of a triple resonance magic angle sample spinning probe for high field solid state nuclear magnetic resonance

Rachel W. Martin; Eric K. Paulson; Kurt W. Zilm

Standard design and construction practices used in building nuclear magnetic resonance (NMR) probes for the study of solid state samples become difficult if not entirely impractical to implement as the 1H resonance frequency approaches the self resonance frequency of commercial capacitors. We describe an approach that utilizes short variable transmission line segments as tunable reactances. Such an approach effectively controls stray reactances and provides a higher Q alternative to ceramic chip capacitors. The particular probe described is built to accommodate a 2.5 mm magic angle spinning rotor system, and is triply tuned to 13C, 15N, and 1H frequencies for use at 18.8 T (200, 80, and 800 MHz, respectively). Isolation of the three radio frequency (rf) channels is achieved using both a rejection trap and a transmission line notch filter. The compact geometry of this design allows three channels with high power handling capability to fit in a medium bore (63 mm) magnet. Extended time variable temperature ...


Langmuir | 2010

Polarization Transfer Solid-State NMR for Studying Surfactant Phase Behavior

Agnieszka Nowacka; Parveen Choudhary Mohr; Jens Norrman; Rachel W. Martin; Daniel Topgaard

The phase behavior of amphiphiles, e.g., lipids and surfactants, at low water content is of great interest for many technical and pharmaceutical applications. When put in contact with air having a moderate relative humidity, amphiphiles often exhibit coexistence between solid and liquid crystalline phases, making their complete characterization difficult. This study describes a (13)C solid-state NMR technique for the investigation of amphiphile phase behavior in the water-poor regime. While the (13)C chemical shift is an indicator of molecular conformation, the (13)C signal intensities obtained with the CP and INEPT polarization transfer schemes yield information on molecular dynamics. A theoretical analysis incorporating the effect of molecular segment reorientation, with the correlation time τ(c) and order parameter S, shows that INEPT is most efficient for mobile segments with τ(c) < 0.01 μs and S < 0.05, while CP yields maximal signal for rigid segments with τ(c) > 10 μs and/or S > 0.5 under typical solid-state NMR experimental conditions. For liquid crystalline phases, where τ(c) < 0.01 μs and 0 < S < 0.3, the observed CP and INEPT intensities serve as a gauge of S. The combination of information on molecular conformation and dynamics permits facile phase diagram determination for systems with solid crystalline, solid amorphous, anisotropic liquid crystalline, and isotropic liquid (crystalline) phases as demonstrated by experiments on a series of reference systems with known phase structure. Three solid phases (anhydrous crystal, dihydrate, gel), two anisotropic liquid crystalline phases (normal hexagonal, lamellar), and two isotropic liquid crystalline phases (micellar cubic, bicontinuous cubic) are identified in the temperature-composition phase diagram of the cetyltrimethylammonium succinate/water system. Replacing the succinate counterion with DNA prevents the formation of phases other than hexagonal and leads to a general increase of τ(c).


Biophysical Journal | 2011

Separating Instability from Aggregation Propensity in γS-Crystallin Variants

William D. Brubaker; J. Alfredo Freites; Kory J. Golchert; Rebecca A. Shapiro; Vasilios Morikis; Douglas J. Tobias; Rachel W. Martin

Molecular dynamics (MD) simulations, circular dichroism (CD), and dynamic light scattering (DLS) measurements were used to investigate the aggregation propensity of the eye-lens protein γS-crystallin. The wild-type protein was investigated along with the cataract-related G18V variant and the symmetry-related G106V variant. The MD simulations suggest that local sequence differences result in dramatic differences in dynamics and hydration between these two apparently similar point mutations. This finding is supported by the experimental measurements, which show that although both variants appear to be mostly folded at room temperature, both display increased aggregation propensity. Although the disease-related G18V variant is not the most strongly destabilized, it aggregates more readily than either the wild-type or the G106V variant. These results indicate that γS-crystallin provides an excellent model system for investigating the role of dynamics and hydration in aggregation by locally unfolded proteins.


Review of Scientific Instruments | 2007

Multipole shimming of permanent magnets using harmonic corrector rings.

Rebecca C. Jachmann; David R. Trease; Louis-S. Bouchard; Dimitris Sakellariou; Rachel W. Martin; R. Schlueter; Thomas F. Budinger; Alexander Pines

Shimming systems are required to provide sufficient field homogeneity for high resolution nuclear magnetic resonance (NMR). In certain specialized applications, such as rotating-field NMR and mobile ex situ NMR, permanent magnet-based shimming systems can provide considerable advantages. We present a simple two-dimensional shimming method based on harmonic corrector rings which can provide arbitrary multipole order shimming corrections. Results demonstrate, for example, that quadrupolar order shimming improves the linewidth by up to an order of magnitude. An additional order of magnitude reduction is in principle achievable by utilizing this shimming method for z-gradient correction and higher order xy gradients.


Journal of the American Chemical Society | 2010

Thermal Stabilization of DMPC/DHPC Bicelles by Addition of Cholesterol Sulfate

Rebecca A. Shapiro; Amanda J. Brindley; Rachel W. Martin

Doping DMPC/DHPC bicelles with cholesterol sulfate broadens the temperature range over which stable alignment occurs, forming an aligned phase at lower temperatures even with high lipid concentrations. Cholesterol sulfate appears to combine the advantages of cholesterol with those of charged amphiphiles, stabilizing the aligned phase and preventing precipitation. This allows NMR data for RDC and CSA protein structure constraints to be acquired at or below room temperature, an obvious advantage for solid-state and solution studies of heat-sensitive proteins.


Physical Chemistry Chemical Physics | 2008

Segmental order parameters in a nonionic surfactant lamellar phase studied with 1H–13C solid-state NMR

Tiago Mendes Ferreira; Bruno Medronho; Rachel W. Martin; Daniel Topgaard

A lyotropic nonionic lamellar system composed of pentaethyleneglycol mono n-dodecyl ether and D(2)O was studied using natural abundance (13)C NMR under magic-angle spinning. Applying a two-dimensional recoupling method proposed by Dvinskikh (R-PDLF), (1)H-(13)C dipolar couplings were estimated over a range of temperatures (300-335 K), thus enabling analysis of structural changes in the liquid crystalline system. The results obtained are used to correlate the conformation and mobility of local sites in the surfactant molecule with overall changes in the lamellar structure.


Chemistry: A European Journal | 2012

Probing the Motional Behavior of Eumelanin and Pheomelanin with Solid-State NMR Spectroscopy: New Insights into the Pigment Properties

Pierre Thureau; Fabio Ziarelli; André Thévand; Rachel W. Martin; Patrick J. Farmer; Stéphane Viel; Giulia Mollica

Melanin is the most widespread pigment in the animal kingdom. Despite its importance, its detailed structure and overall molecular architecture remain elusive. Both eumelanin (black) and pheomelanin (red) occur in the human body. These two melanin compounds show very different responses to UV-radiation exposure, which could relate to their microscopic features. Herein, the structural properties and motional behavior of natural eu- and pheomelanin extracted from black and red human hair are investigated by means of solid-state NMR spectroscopy. Several 1D and 2D NMR spectroscopic techniques were combined to highlight the differences between the two forms of the pigment. The quantitative analysis of the (1) H NMR wide-line spectra extracted from 2D (1) H-(13) C LG-WISE experiments revealed the presence of two dynamically distinguishable components in both forms. Remarkably, the more mobile fraction of the pigment showed a higher mobility with respect to the proteinaceous components that coexist in the melanosome, which is particularly evident for the red pigment. An explanation of the observed effects takes into account the different architecture of the proteinaceous matrix that constitutes the physical substrate onto which melanin polymerizes within the eu- and pheomelanosomes. Further insight into the molecular structure of the more mobile fraction of pheomelanin was also obtained by means of the analysis of 2D (1) H-(13) C INEPT experiments. Our view is that not only structural features inherent in the pure pigment, but also the role of the matrix structure in defining the overall melanin supramolecular arrangement and the resulting dynamic behavior of the two melanin compounds should be taken into account to explain their functions. The reported results could pave a new way toward the explanation of the molecular origin of the differences in the photoprotection activity displayed by black and red melanin pigments.


Journal of the American Chemical Society | 2016

Stability of Protein-Specific Hydration Shell on Crowding

Kuo-Ying Huang; Carolyn N. Kingsley; Ryan Sheil; Chi-Yuan Cheng; Jan C. Bierma; Kyle W. Roskamp; Domarin Khago; Rachel W. Martin; Songi Han

We demonstrate that the effect of protein crowding is critically dependent on the stability of the proteins hydration shell, which can dramatically vary between different proteins. In the human eye lens, γS-crystallin (γS-WT) forms a densely packed transparent hydrogel with a high refractive index, making it an ideal system for studying the effects of protein crowding. A single point mutation generates the cataract-related variant γS-G18V, dramatically altering the optical properties of the eye lens. This system offers an opportunity to explore fundamental questions regarding the effect of protein crowding, using γS-WT and γS-G18V: (i) how do the diffusion dynamics of hydration water change as a function of protein crowding?; and (ii) upon hydrogel formation of γS-WT, has a dynamic transition occurred generating a single population of hydration water, or do populations of bulk and hydration water coexist? Using localized spin probes, we separately probe the local translational diffusivity of both surface hydration and interstitial water of γS-WT and γS-G18V in solution. Surprisingly, we find that under the influence of hydrogel formation at highly crowded γS-WT concentrations up to 500 mg/mL, the protein hydration shell remains remarkably dynamic, slowing by less than a factor of 2, if at all, compared to that in dilute protein solutions of ∼5 mg/mL. Upon self-crowding, the population of this robust surface hydration water increases, while a significant bulk-like water population coexists even at ∼500 mg/mL protein concentrations. In contrast, surface water of γS-G18V irreversibly dehydrates with moderate concentration increases or subtle alterations to the solution conditions, demonstrating that the effect of protein crowding is highly dependent on the stability of the protein-specific hydration shell. The core function of γS-crystallin in the eye lens may be precisely its capacity to preserve a robust hydration shell, whose stability is abolished by a single G18V mutation.


Journal of Chemical Physics | 2009

Shimmed matching pulses: simultaneous control of rf and static gradients for inhomogeneity correction.

John M. Franck; Vasiliki Demas; Rachel W. Martin; Louis-S. Bouchard; Alexander Pines

Portable NMR systems generally suffer from poor field homogeneity and are therefore used more commonly for imaging and relaxation measurements rather than for spectroscopy. In recent years, various approaches have been proposed to increase the sample volume that is usable for spectroscopy. These include approaches based on manual shimming and those based on clever combinations of modulated radio frequency and gradient fields. However, this volume remains small and, therefore, of limited utility. We present improved pulses designed to correct for inhomogeneous dispersion across wide ranges of frequency offsets without eliminating chemical shift or spatial encoding. This method, based on the adiabatic double passage, combines the relatively larger corrections available from spatially matched rf gradients [C. Meriles et al., J. Magn. Reson. 164, 177 (2003)]. with the adjustable corrections available from time-modulated static field gradients [D. Topgaard et al., Proc. Natl. Acad. Sci. U.S.A. 101, 17576 (2004)]. We explain the origins of these corrections with a theoretical model that simplifies and expedites the design of the pulse waveforms. We also present a generalized method for evaluating and comparing pulses designed for inhomogeneity correction. Experiments validate this method and support simulations that offer new possibilities for significantly enhanced performance in portable environments.

Collaboration


Dive into the Rachel W. Martin's collaboration.

Top Co-Authors

Avatar

Alexander Pines

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Dimitris Sakellariou

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan C. Bierma

University of California

View shared research outputs
Top Co-Authors

Avatar

John E. Kelly

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge