Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachel Yamin is active.

Publication


Featured researches published by Rachel Yamin.


Immunity | 2015

Binding of the Fap2 Protein of Fusobacterium nucleatum to Human Inhibitory Receptor TIGIT Protects Tumors from Immune Cell Attack

Chamutal Gur; Yara Ibrahim; Batya Isaacson; Rachel Yamin; Jawad Abed; Moriya Gamliel; Jonatan Enk; Yotam Bar-On; Noah Stanietsky-Kaynan; Shunit Coppenhagen-Glazer; Noam Shussman; Gideon Almogy; Angelica Cuapio; Erhard Hofer; Dror Mevorach; Adi Tabib; Rona Ortenberg; Gal Markel; Karmela Miklić; Stipan Jonjić; Caitlin A. Brennan; Wendy S. Garrett; Gilad Bachrach; Ofer Mandelboim

Bacteria, such as Fusobacterium nucleatum, are present in the tumor microenvironment. However, the immunological consequences of intra-tumoral bacteria remain unclear. Here, we have shown that natural killer (NK) cell killing of various tumors is inhibited in the presence of various F. nucleatum strains. Our data support that this F. nucleatum-mediated inhibition is mediated by human, but not by mouse TIGIT, an inhibitory receptor present on all human NK cells and on various T cells. Using a library of F. nucleatum mutants, we found that the Fap2 protein of F. nucleatum directly interacted with TIGIT, leading to the inhibition of NK cell cytotoxicity. We have further demonstrated that tumor-infiltrating lymphocytes expressed TIGIT and that T cell activities were also inhibited by F. nucleatum via Fap2. Our results identify a bacterium-dependent, tumor-immune evasion mechanism in which tumors exploit the Fap2 protein of F. nucleatum to inhibit immune cell activity via TIGIT.


European Journal of Immunology | 2013

Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR

Noa Stanietsky; Tihana Lenac Roviš; Ariella Glasner; Einat Seidel; Pinchas Tsukerman; Rachel Yamin; Jonatan Enk; Stipan Jonjić; Ofer Mandelboim

The activity of natural killer (NK) cells is controlled by a balance of signals derived from inhibitory and activating receptors. TIGIT is a novel inhibitory receptor, recently shown in humans to interact with two ligands: PVR and Nectin2 and to inhibit human NK‐cell cytotoxicity. Whether mouse TIGIT (mTIGIT) inhibits mouse NK‐cell cytotoxicity is unknown. Here we show that mTIGIT is expressed by mouse NK cells and interacts with mouse PVR. Using mouse and human Ig fusion proteins we show that while the human TIGIT (hTIGIT) cross‐reacts with mouse PVR (mPVR), the binding of mTIGIT is restricted to mPVR. We further demonstrate using surface plasmon resonance (SPR) and staining with Ig fusion proteins that mTIGIT binds to mPVR with higher affinity than the co‐stimulatory PVR‐binding receptor mouse DNAM1 (mDNAM1). Functionally, we show that triggering of mTIGIT leads to the inhibition of NK‐cell cytotoxicity, that IFN‐γ secretion is enhanced when mTIGIT is blocked and that the TIGIT‐mediated inhibition is dominant over the signals delivered by the PVR‐binding co‐stimulatory receptors. Additionally, we identify the inhibitory motif responsible for mTIGIT inhibition. In conclusion, we show that TIGIT is a powerful inhibitory receptor for mouse NK cells.


PLOS ONE | 2012

Elucidating the Mechanisms of Influenza Virus Recognition by Ncr1

Ariella Glasner; Antonija Zurunic; Tal Meningher; Tihana Lenac Roviš; Pinchas Tsukerman; Yotam Bar-On; Rachel Yamin; Adrienne F.A. Meyers; Michal Mandeboim; Stipan Jonjić; Ofer Mandelboim

Natural killer (NK) cells are innate cytotoxic lymphocytes that specialize in the defense against viral infection and oncogenic transformation. Their action is tightly regulated by signals derived from inhibitory and activating receptors; the later include proteins such as the Natural Cytotoxicity Receptors (NCRs: NKp46, NKp44 and NKp30). Among the NCRs, NKp46 is the only receptor that has a mouse orthologue named Ncr1. NKp46/Ncr1 is also a unique marker expressed on NK and on Lymphoid tissue inducer (LTI) cells and it was implicated in the control of various viral infections, cancer and diabetes. We have previously shown that human NKp46 recognizes viral hemagglutinin (HA) in a sialic acid-dependent manner and that the O-glycosylation is essential for the NKp46 binding to viral HA. Here we studied the molecular interactions between Ncr1 and influenza viruses. We show that Ncr1 recognizes influenza virus in a sialic acid dependent manner and that N-glycosylation is important for this binding. Surprisingly we demonstrate that none of the predicted N-glycosilated residues of Ncr1 are essential for its binding to influenza virus and we thus conclude that other, yet unidentified N-glycosilated residues are responsible for its recognition. We have demonstrated that N glycosylation play little role in the recognition of mouse tumor cell lines and also showed the in-vivo importance of Ncr1 in the control of influenza virus infection by infecting C57BL/6 and BALB/c mice knockout for Ncr1 with influenza.


Cell Reports | 2015

Dynamic Co-evolution of Host and Pathogen: HCMV Downregulates the Prevalent Allele MICA∗008 to Escape Elimination by NK Cells

Einat Seidel; Vu Thuy Khanh Le; Yotam Bar-On; Pinchas Tsukerman; Jonatan Enk; Rachel Yamin; Natan Stein; Dominik Schmiedel; Esther Oiknine Djian; Yiska Weisblum; Boaz Tirosh; Peter Stastny; Dana G. Wolf; Hartmut Hengel; Ofer Mandelboim

SUMMARY Natural killer (NK) cells mediate innate immune responses against hazardous cells and are particularly important for the control of human cytomegalovirus (HCMV). NKG2D is a key NK activating receptor that recognizes a family of stress-induced ligands, including MICA, MICB, and ULBP1-6. Notably, most of these ligands are targeted by HCMV proteins and a miRNA to prevent the killing of infected cells by NK cells. A particular highly prevalent MICA allele, MICA*008, is considered to be an HCMV-resistant “escape variant” that confers advantage to human NK cells in recognizing infected cells. However, here we show that HCMV uses its viral glycoprotein US9 to specifically target MICA*008 and thus escapes NKG2D attack. The finding that HCMV evolved a protein dedicated to countering a single host allele illustrates the dynamic co-evolution of host and pathogen.


Cell Host & Microbe | 2013

Natural Killer Cell-Mediated Host Defense against Uropathogenic E. coli Is Counteracted by Bacterial HemolysinA-Dependent Killing of NK Cells

Chamutal Gur; Shunit Coppenhagen-Glazer; Shilo Rosenberg; Rachel Yamin; Jonatan Enk; Ariella Glasner; Yotam Bar-On; Omer Fleissig; Ronit Naor; Jawad Abed; Dror Mevorach; Zvi Granot; Gilad Bachrach; Ofer Mandelboim

Uropathogenic Escherichia coli (UPEC) are a common cause of urinary tract infections (UTIs) in humans. While the importance of natural killer (NK) cells in innate immune protection against tumors and viral infections is well documented, their role in defense against bacterial infections is still emerging, and their involvement in UPEC-mediated UTI is practically unknown. Using a systematic mutagenesis approach, we found that UPEC adheres to NK cells primarily via its type I fimbriae and employs its hemolysinA toxin to kill NK cells. In the absence of hemolysinA, NK cells directly respond to the bacteria and secrete the cytokine TNF-α, which results in decreased bacterial numbers in vitro and reduction of bacterial burden in the infected bladders. Thus, NK cells control UPEC via TNF-α production, which UPEC counteracts by hemolysinA-mediated killing of NK cells, representing a previously unrecognized host defense and microbial counterattack mechanism in the context of UTI.


PLOS Pathogens | 2013

The viral KSHV chemokine vMIP-II inhibits the migration of Naive and activated human NK cells by antagonizing two distinct chemokine receptors.

Rachel Yamin; Noa S. Kaynan; Ariella Glasner; Alon Vitenshtein; Pinchas Tsukerman; Yoav Bauman; Yael Ophir; Shlomo Elias; Yotam Bar-On; Chamutal Gur; Ofer Mandelboim

Natural killer (NK) cells are innate immune cells able to rapidly kill virus-infected and tumor cells. Two NK cell populations are found in the blood; the majority (90%) expresses the CD16 receptor and also express the CD56 protein in intermediate levels (CD56Dim CD16Pos) while the remaining 10% are CD16 negative and express CD56 in high levels (CD56Bright CD16Neg). NK cells also reside in some tissues and traffic to various infected organs through the usage of different chemokines and chemokine receptors. Kaposis sarcoma-associated herpesvirus (KSHV) is a human virus that has developed numerous sophisticated and versatile strategies to escape the attack of immune cells such as NK cells. Here, we investigate whether the KSHV derived cytokine (vIL-6) and chemokines (vMIP-I, vMIP-II, vMIP-III) affect NK cell activity. Using transwell migration assays, KSHV infected cells, as well as fusion and recombinant proteins, we show that out of the four cytokine/chemokines encoded by KSHV, vMIP-II is the only one that binds to the majority of NK cells, affecting their migration. We demonstrate that vMIP-II binds to two different receptors, CX3CR1 and CCR5, expressed by naïve CD56Dim CD16Pos NK cells and activated NK cells, respectively. Furthermore, we show that the binding of vMIP-II to CX3CR1 and CCR5 blocks the binding of the natural ligands of these receptors, Fractalkine (Fck) and RANTES, respectively. Finally, we show that vMIP-II inhibits the migration of naïve and activated NK cells towards Fck and RANTES. Thus, we present here a novel mechanism in which KSHV uses a unique protein that antagonizes the activity of two distinct chemokine receptors to inhibit the migration of naïve and activated NK cells.


eLife | 2016

The RNA binding protein IMP3 facilitates tumor immune escape by downregulating the stress-induced ligands ULPB2 and MICB

Dominik Schmiedel; Julie Tai; Rachel Yamin; Orit Berhani; Yoav Bauman; Ofer Mandelboim

Expression of the stress-induced ligands MICA, MICB and ULBP 1–6 are up-regulated as a cellular response to DNA damage, excessive proliferation or viral infection; thereby, they enable recognition and annihilation by immune cells that express the powerful activating receptor NKG2D. This receptor is present not exclusively, but primarily on NK cells. Knowledge about the regulatory mechanisms controlling ULBP expression is still vague. In this study, we report a direct interaction of the oncogenic RNA binding protein (RBP) IMP3 with ULBP2 mRNA, leading to ULBP2 transcript destabilization and reduced ULBP2 surface expression in several human cell lines. We also discovered that IMP3 indirectly targets MICB with a mechanism functionally distinct from that of ULBP2. Importantly, IMP3-mediated regulation of stress-ligands leads to impaired NK cell recognition of transformed cells. Our findings shed new light on the regulation of NKG2D ligands and on the mechanism of action of a powerful oncogenic RBP, IMP3. DOI: http://dx.doi.org/10.7554/eLife.13426.001


Blood | 2014

Immune evasion by oncogenic proteins of acute myeloid leukemia.

Shlomo Elias; Rachel Yamin; Lior Golomb; Pinchas Tsukerman; Noah Stanietsky-Kaynan; Dina Ben-Yehuda; Ofer Mandelboim

PML-RARA and AML1-ETO are important oncogenic fusion proteins that play a central role in transformation to acute myeloid leukemia (AML). Whether these fusion proteins render the tumor cells with immune evasion properties is unknown. Here we show that both oncogenic proteins specifically downregulate the expression of CD48, a ligand of the natural killer (NK) cell activating receptor 2B4, thereby leading to decreased killing by NK cells. We demonstrate that this process is histone deacetylase (HDAC)-dependent, that it is mediated through the downregulation of CD48 messenger RNA, and that treatment with HDAC inhibitors (HDACi) restores the expression of CD48. Furthermore, by using chromatin immunoprecepitation (ChIP) experiments, we show that AML1-ETO directly interacts with CD48. Finally, we show that AML patients who are carrying these specific translocations have low expression of CD48.


Virology | 2015

Human cytomegalovirus induces a distinct innate immune response in the maternal-fetal interface.

Yiska Weisblum; Amos Panet; Zichria Zakay-Rones; Alon Vitenshtein; Ronit Haimov-Kochman; Debra Goldman-Wohl; Esther Oiknine-Djian; Rachel Yamin; Karen Meir; Hagai Amsalem; Tal Imbar; Ofer Mandelboim; Simcha Yagel; Dana G. Wolf

The initial interplay between human cytomegalovirus (HCMV) and innate tissue response in the human maternal-fetal interface, though crucial for determining the outcome of congenital HCMV infection, has remained unknown. We studied the innate response to HCMV within the milieu of the human decidua, the maternal aspect of the maternal-fetal interface, maintained ex vivo as an integral tissue. HCMV infection triggered a rapid and robust decidual-tissue innate immune response predominated by interferon (IFN)γ and IP-10 induction, dysregulating the decidual cytokine/chemokine environment in a distinctive fashion. The decidual-tissue response was already elicited during viral-tissue contact, and was not affected by neutralizing HCMV antibodies. Of note, IFNγ induction, reflecting immune-cell activation, was distinctive to the maternal decidua, and was not observed in concomitantly-infected placental (fetal) villi. Our studies in a clinically-relevant surrogate human model, provide a novel insight into the first-line decidual tissue response which could affect the outcome of congenital infection.


Oncotarget | 2015

Cytokine secretion and NK cell activity in human ADAM17 deficiency

Pinchas Tsukerman; Eli M. Eisenstein; Maor Chavkin; Dominik Schmiedel; Eitan Wong; Marion Werner; Barak Yaacov; Diana Averbuch; Vered Molho-Pessach; Polina Stepensky; Noa S. Kaynan; Yotam Bar-On; Einat Seidel; Rachel Yamin; Irit Sagi; Orly Elpeleg; Ofer Mandelboim

Genetic deficiencies provide insights into gene function in humans. Here we describe a patient with a very rare genetic deficiency of ADAM17. We show that the patients PBMCs had impaired cytokine secretion in response to LPS stimulation, correlating with the clinical picture of severe bacteremia from which the patient suffered. ADAM17 was shown to cleave CD16, a major NK killer receptor. Functional analysis of patients NK cells demonstrated that his NK cells express normal levels of activating receptors and maintain high surface levels of CD16 following mAb stimulation. Activation of individual NK cell receptors showed that the patients NK cells are more potent when activated directly by CD16, albeit no difference was observed in Antibody Depedent Cytotoxicity (ADCC) assays. Our data suggest that ADAM17 inhibitors currently considered for clinical use to boost CD16 activity should be cautiously applied, as they might have severe side effects resulting from impaired cytokine secretion.

Collaboration


Dive into the Rachel Yamin's collaboration.

Top Co-Authors

Avatar

Ofer Mandelboim

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Pinchas Tsukerman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Yotam Bar-On

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Ariella Glasner

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Alon Vitenshtein

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Chamutal Gur

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Yoav Bauman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Dana G. Wolf

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Dominik Schmiedel

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Einat Seidel

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge