Rachele Stefania
University of Turin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rachele Stefania.
Bioconjugate Chemistry | 2011
Francesca Arena; Jebasingh Bhagavath Singh; Eliana Gianolio; Rachele Stefania; Silvio Aime
The aim of this work is to design and test an MRI probe (Gd-DOTAtyr-gal) able to report on the gene expression of β-galactosidase (β-Gal) in melanoma cells. The probe consists of a Gd-DOTA reporter bearing on its surface a tyrosine-galactose-pyranose functionality that, upon the release of the sugar moiety, readily transforms, in the presence of tyrosinase, into melanin oligomeric/polymeric mixture. The formation of Gd-DOTA-containing melanin oligomers and polymers is accompanied by a marked increase of the water proton relaxation rate. The steps involving the release of the galactose-pyranose group and the formation of the melanin-like structure have been carefully investigated in vitro by relaxometric and UV-vis measurements. Cellular uptake studies of Gd-DOTAtyr-gal by melanoma cells have shown that the probe enters the cells, and it appears not to be confined in endosomal vesicles. Using B16-F10LacZ transfected cells, the fast formation of paramagnetic melanin-Gd(III)-containing species has been assessed by the measurement of increased longitudinal relaxation rates of the cellular pellets suspensions. The in vitro results have been confirmed in in vivo MRI investigations on murine melanoma tumor bearing mice. Upon direct injection of Gd-DOTAtyr-gal, a good contrast is observed after 5 h post injection in B16-F10LacZ tumors, but not in B16-F10 tumors lacking the β-Gal enzyme. Gd-DOTAtyr-gal in combination with tyrosinase introduces a novel approach for the detection of β-Gal expression by MRI in vivo.
Analytical Chemistry | 2013
Enza Di Gregorio; Eliana Gianolio; Rachele Stefania; Giuseppina Barutello; Giuseppe Digilio; Silvio Aime
Commercial Gd-containing complexes are often used as MRI reporters in cellular labeling procedures as they are internalized into endosomes by pinocytosis. A methodology has been applied to assess the relative stability of three commercial Gd contrast agents following cellular uptake in fibroblasts and macrophages. It has been found that the acyclic series of Gd MRI contrast agents are degraded much more rapidly than their macrocyclic analogues, following endosomal internalization into living cells. This helps to explain their causal role in the development of nephrogenic systemic fibrosis in renally impaired patients. The methodology has also been applied to assess the fate of Gd-DTPA-BMA-loaded liposomes upon their endosomal internalization. Resistant liposomes prevent the degradation of the complex, whereas liposomes designed to release their payload in the acidic environments show a loss of integrity of Gd-DTPA-BMA analogous to the one observed upon internalization of the free complex.
Chemistry: A European Journal | 2009
Rachele Stefania; Lorenzo Tei; Alessandro Barge; Simonetta Geninatti Crich; Ibolya Szabo; Claudia Cabella; Giancarlo Cravotto; Silvio Aime
Three new magnetic resonance imaging probes that target glutamine transporters have been synthesized. They consist of a Gd-DOTA-monoamide moiety (DOTA=1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) linked through a six carbon atom chain to a vector represented by a glutamine residue bound through alpha-carboxylic, gamma-carboxamidic, or alpha-amino functionalities. Their uptake by HTC (rat hepatocarcinoma) and healthy rat hepatocytes has shown that the system containing the glutamine vector bound through the alpha-carboxylic group displays a markedly higher affinity for tumor cells. The observed behavior is rationalized in terms of the exploitation of an additional glutamine transporter active in hepatic tumor cells.
Radiology | 2017
Eliana Gianolio; Paola Bardini; Francesca Arena; Rachele Stefania; Enza Di Gregorio; Rebecca Iani; Silvio Aime
Purpose To evaluate the speciation of gadolinium-containing species after multiple administrations of the gadolinium-based contrast agents (GBCAs) gadodiamide and gadoteridol and to quantify the amount of intact gadolinium complexes and insoluble gadolinium-containing species. Materials and Methods A total dose of 13.2 mmol per kilogram of body weight of each GBCA was administered in healthy Wistar rats over a period of 8 weeks. Three days after the final administration, rats were sacrificed, and the brains were excised and divided into three portions. Each portion of brain homogenate was divided into two parts, one for determination of the total gadolinium concentration with inductively coupled plasma mass spectrometry and one for determination of the amount of intact GBCA and gadolinium-containing insoluble species. Relaxometric measurements of gadodiamide and gadolinium trichloride in the presence of polysialic acid were also performed. Results The mean total gadolinium concentrations for gadodiamide and gadoteridol, respectively, were 0.317 μg/g ± 0.060 (standard deviation) and 0.048 μg/g ± 0.004 in the cortex, 0.418 μg/g ± 0.078 and 0.051 μg/g ± 0.009 in the subcortical brain, and 0.781 μg/g ± 0.079 and 0.061 μg/g ± 0.012 in the cerebellum. Gadoteridol comprised 100% of the gadolinium species found in rats treated with gadoteridol. In rats treated with gadodiamide, the largest part of gadolinium retained in brain tissue was insoluble species. In the cerebellum, the amount of intact gadodiamide accounts for 18.2% ± 10.6 of the total gadolinium found therein. The mass balance found for gadolinium implies the occurrence of other soluble gadolinium-containing species (approximately 30%). The relaxivity of the gadolinium polysialic acid species formed in vitro was 97.8 mM/sec at 1.5 T and 298 K. Conclusion Gadoteridol was far less retained, and the entire detected gadolinium was intact soluble GBCA, while gadodiamide yielded both soluble and insoluble gadolinium-containing species, with insoluble species dominating.
Molecular Pharmaceutics | 2014
Francesca Garello; Rachele Stefania; Silvio Aime; Enzo Terreno; Daniela Delli Castelli
Glucan particles (GPs) are monodisperse microspheres derived from bakers yeast and represent an interesting class of microcarriers for theranostic applications as they show a high affinity toward immune system cells. The typical loading strategy was to harness the ability of the molecule to be loaded to interact with nano-/microassembled systems through electrostatic or hydrophobic forces. However, small water-soluble chemicals could not be steadily retained by the leaky shell of GPs. In this work, we propose an alternative loading approach for small water-soluble compounds that is based on their entrapment in the aqueous core of liposomes that are directly formed into the microparticles through the reverse phase evaporation method (REV). The construct obtained may act as biocompatible carrier to deliver and release, even in a triggerable way, bioactive compounds.
Advanced Healthcare Materials | 2017
Dario Livio Longo; Rachele Stefania; Chiara Callari; Francesco De Rose; Riccardo Rolle; Laura Conti; Lorena Consolino; Francesca Arena; Silvio Aime
A dynamic contrast enhanced (DCE) approach for tumor photoacoustic (PA) imaging is described. Novel water soluble melanin-based derivatives are synthesized that exhibit good PA properties, stability, safety and accumulation in tumor bearing mice. This melanin derivative is capable to characterize tumor vasculature and to monitor vessel permeability changes upon antiangiogenic treatment. DCE-PA imaging can assess functional response to cancer treatments.
Nanotechnology | 2016
Maria Rosaria Ruggiero; Simonetta Geninatti Crich; Elisabetta Sieni; Paolo Sgarbossa; Michele Forzan; Eleonora Cavallari; Rachele Stefania; Fabrizio Dughiero; Silvio Aime
Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar (1)H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.
ChemMedChem | 2017
Diego Alberti; Nicoletta Protti; Morgane Franck; Rachele Stefania; Silva Bortolussi; S. Altieri; Annamaria Deagostino; Silvio Aime; Simonetta Geninatti Crich
The combination of different therapeutic modalities is a promising option to combat the recurrence of tumors. In this study, polylactic and polyglycolic acid nanoparticles were used for the simultaneous delivery of a boron–curcumin complex (RbCur) and an amphiphilic gadolinium complex into tumor cells with the aim of performing boron and gadolinium neutron capture therapy (NCT) in conjunction with the additional antiproliferative effects of curcumin. Furthermore, the use of Gd complexes allows magnetic resonance imaging (MRI) assessment of the amount of B and Gd internalized by tumor cells. Poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles were targeted to ovarian cancer (IGROV‐1) cells through folate receptors, by including in the formulation a PEGylated phospholipid functionalized with the folate moiety. NCT was performed on IGROV‐1 cells internalizing 6.4 and 78.6 μg g−1 of 10B and 157Gd, respectively. The synergic action of neutron treatment and curcumin cytotoxicity was shown to result in a significant therapeutic improvement.
Bioconjugate Chemistry | 2016
Amerigo Pagoto; Rachele Stefania; Francesca Garello; Francesca Arena; Giuseppe Digilio; Silvio Aime; Enzo Terreno
Inflammation is signaled by the overexpression of epitopes on the vascular endothelium that primarily aim at recruiting immune cells into the inflamed area. The intravascular localization of these biomarkers makes them suitable targets for the MRI visualization of inflammation. Phospholipid-based nanosystems appear excellent candidates in virtue of their good biocompatibility, ability to deliver a high number of imaging units at the target site, and for the easy functionalization with targeting vectors. In this work, phospholipid-based micelles (hydrodynamic diameter of 20 nm) loaded with the amphiphilic Gd(III)-complex Gd-DOTAMA(C18)2 were vectorized with a small peptide able to specifically bind VCAM-1 receptors. The micelles displayed a high longitudinal relaxivity (36.4 s(-1)mmolGd(-1) at 25 °C and 0.7 T). A (1)H- and (17)O-water relaxometry study indicated that the paramagnetic complex embedded in the nanoparticles adopted two isomeric conformations, likely reflecting the well-known square antiprismatic (SAP) and twisted square antiprismatic (TSAP) configurations typically observed in DOTA-like lanthanide complexes. Interestingly, the TSAP structure, showing a much faster exchange rate for the water molecule coordinated to the metal ion, was the most abundant, thus explaining the high relaxivity of the micellar agent. The systemic administration of the micelles into a lipopolysaccharide-induced murine model of acute inflammation successfully demonstrated the ability of the targeting agents to detect the diseased area by T1 contrast enhanced MRI.
International Journal of Molecular Sciences | 2017
Dario Livio Longo; Rachele Stefania; Silvio Aime; Alexander A. Oraevsky
Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents.