Rachelle Bester
Stellenbosch University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rachelle Bester.
Frontiers in Microbiology | 2013
Hans J. Maree; Rodrigo P. P. Almeida; Rachelle Bester; Kar Mun Chooi; Daniel Cohen; Valerian V. Dolja; Marc Fuchs; Deborah A. Golino; Anna E. C. Jooste; G. P. Martelli; Rayapati A. Naidu; Adib Rowhani; P. Saldarelli; Johan T. Burger
Grapevine leafroll disease (GLD) is one of the most important grapevine viral diseases affecting grapevines worldwide. The impact on vine health, crop yield, and quality is difficult to assess due to a high number of variables, but significant economic losses are consistently reported over the lifespan of a vineyard if intervention strategies are not implemented. Several viruses from the family Closteroviridae are associated with GLD. However, Grapevine leafroll-associated virus 3 (GLRaV-3), the type species for the genus Ampelovirus, is regarded as the most important causative agent. Here we provide a general overview on various aspects of GLRaV-3, with an emphasis on the latest advances in the characterization of the genome. The full genome of several isolates have recently been sequenced and annotated, revealing the existence of several genetic variants. The classification of these variants, based on their genome sequence, will be discussed and a guideline is presented to facilitate future comparative studies. The characterization of sgRNAs produced during the infection cycle of GLRaV-3 has given some insight into the replication strategy and the putative functionality of the ORFs. The latest nucleotide sequence based molecular diagnostic techniques were shown to be more sensitive than conventional serological assays and although ELISA is not as sensitive it remains valuable for high-throughput screening and complementary to molecular diagnostics. The application of next-generation sequencing is proving to be a valuable tool to study the complexity of viral infection as well as plant pathogen interaction. Next-generation sequencing data can provide information regarding disease complexes, variants of viral species, and abundance of particular viruses. This information can be used to develop more accurate diagnostic assays. Reliable virus screening in support of robust grapevine certification programs remains the cornerstone of GLD management.
Virology Journal | 2012
Rachelle Bester; Anna E. C. Jooste; Hans J. Maree; Johan T. Burger
BackgroundGrapevine leafroll-associated virus 3 (GLRaV-3) is the main contributing agent of leafroll disease worldwide. Four of the six GLRaV-3 variant groups known have been found in South Africa, but their individual contribution to leafroll disease is unknown. In order to study the pathogenesis of leafroll disease, a sensitive and accurate diagnostic assay is required that can detect different variant groups of GLRaV-3.MethodsIn this study, a one-step real-time RT-PCR, followed by high-resolution melting (HRM) curve analysis for the simultaneous detection and identification of GLRaV-3 variants of groups I, II, III and VI, was developed. A melting point confidence interval for each variant group was calculated to include at least 90% of all melting points observed. A multiplex RT-PCR protocol was developed to these four variant groups in order to assess the efficacy of the real-time RT-PCR HRM assay.ResultsA universal primer set for GLRaV-3 targeting the heat shock protein 70 homologue (Hsp70h) gene of GLRaV-3 was designed that is able to detect GLRaV-3 variant groups I, II, III and VI and differentiate between them with high-resolution melting curve analysis. The real-time RT-PCR HRM and the multiplex RT-PCR were optimized using 121 GLRaV-3 positive samples. Due to a considerable variation in melting profile observed within each GLRaV-3 group, a confidence interval of above 90% was calculated for each variant group, based on the range and distribution of melting points. The intervals of groups I and II could not be distinguished and a 95% joint confidence interval was calculated for simultaneous detection of group I and II variants. An additional primer pair targeting GLRaV-3 ORF1a was developed that can be used in a subsequent real-time RT-PCR HRM to differentiate between variants of groups I and II. Additionally, the multiplex RT-PCR successfully validated 94.64% of the infections detected with the real-time RT-PCR HRM.ConclusionThe real-time RT-PCR HRM provides a sensitive, automated and rapid tool to detect and differentiate different variant groups in order to study the epidemiology of leafroll disease.
PLOS ONE | 2015
Hans J. Maree; Michael D. Pirie; Kristin Oosthuizen; Rachelle Bester; Johan T. Burger
The evolutionary history of the exclusively grapevine (Vitis spp.) infecting, grapevine leafroll-associated virus 3 (GLRaV-3) has not been studied extensively, partly due to limited available sequence data. In this study we trace the evolutionary history of GLRaV-3, focussing on isolate GH24, a newly discovered variant. GH24 was discovered through the use of next-generation sequencing (NGS) and the whole genome sequence determined and validated with Sanger sequencing. We assembled an alignment of all 13 available whole genomes of GLRaV-3 isolates and all other publicly available GLRaV-3 sequence data. Using multiple recombination detection methods we identified a clear signal for recombination in one whole genome sequence and further evidence for recombination in two more, including GH24. We inferred phylogenetic trees and networks and estimated the ages of common ancestors of GLRaV-3 clades by means of relaxed clock models calibrated with asynchronous sampling dates. Our results generally confirm previously identified variant groups as well as two new groups (VII and VIII). Higher order groups were defined as supergroups designated A to D. Supergroup A includes variant groups I-V and supergroup B group VI and its related unclassified isolates. Supergroups C and D are less well known, including the newly identified groups VII (including isolate GH24) and VIII respectively. The inferred node ages suggest that the origins of the major groups of GLRaV-3, including isolate GH24, may have occurred prior to worldwide cultivation of grapevines, whilst the current diversity represents closely related isolates that diverged from common ancestors within the last century.
Virology Journal | 2016
Marike Visser; Rachelle Bester; Johan T. Burger; Hans J. Maree
BackgroundThe use of next-generation sequencing has become an established method for virus detection. Efficient study design for accurate detection relies on the optimal amount of data representing a significant portion of a virus genome.FindingsIn this study, genome coverage at different sequencing depths was determined for a number of viruses, viroids, hosts and sequencing library types, using both read-mapping and de novo assembly-based approaches. The results highlighted the strength of ribo-depleted RNA and sRNA in obtaining saturated genome coverage with the least amount of data, while even though the poly(A)-selected RNA yielded virus-derived reads, it was insufficient to cover the complete genome of a non-polyadenylated virus. The ribo-depleted RNA data also outperformed the sRNA data in terms of the percentage of coverage that could be obtained particularly with the de novo assembled contigs.ConclusionOur results suggest the use of ribo-depleted RNA in a de novo assembly-based approach for the detection of single-stranded RNA viruses. Furthermore, we suggest that sequencing one million reads will provide sufficient genome coverage specifically for closterovirus detection.
Archives of Virology | 2017
Rachelle Bester; Johan T. Burger; Hans J. Maree
MicroRNAs (miRNAs) are a class of endogenous small non-coding RNAs (sRNA) that play an essential role in the regulation of target mRNAs expressed during plant development and in response to stress. MicroRNA expression profiling has helped to identify miRNAs that regulate a range of processes, including the plant’s defence response to pathogens. In this study, differential miRNA expression in own-rooted Vitis vinifera cv. Cabernet Sauvignon plants infected with grapevine leafroll-associated virus 3 was investigated with microarrays and next-generation sequencing (NGS) of sRNA and mRNA. These high-throughput approaches identified several differentially expressed miRNAs. Four miRNAs, identified by both approaches, were validated by stemloop RT-PCRs. Three of the predicted targets of the differentially expressed miRNAs were also differentially expressed in the transcriptome data of infected plants, and were validated by RT-qPCR. Identification of these miRNAs and their targets can lead to a better understanding of host-pathogen interactions involved in grapevine leafroll disease and the identification of possible targets for virus resistance.
Biotechnology Letters | 2017
Rachelle Bester; Pieter Theo Pepler; Dirk J. Aldrich; Hans J. Maree
ObjectivesTo enable analysis and comparisons of different relative quantitation experiments, a web-browser application called Harbin was created that uses a quantile-based scoring system for the comparison of samples at different time points and between experiments.ResultsHarbin uses the standard curve method for relative quantitation to calculate concentration ratios (CRs). To evaluate if different datasets can be combined the Harbin quantile bootstrap test is proposed. This test is more sensitive in detecting distributional differences between data sets than the Kolmogorov–Smirnov test. The utility of the test is demonstrated in a comparison of three grapevine leafroll associated virus 3 (GLRaV-3) RT-qPCR data sets.ConclusionsThe quantile-based scoring system of CRs will enable the monitoring of virus titre or gene expression over different time points and be useful in other genomic applications where the combining of data sets are required.
Archives of Virology | 2012
Rachelle Bester; Hans J. Maree; Johan T. Burger
European Journal of Plant Pathology | 2015
Anna E. C. Jooste; Nicholas Molenaar; Hans J. Maree; Rachelle Bester; Liesl Morey; Wenhelene C. de Koker; Johan T. Burger
Journal of Virological Methods | 2014
Rachelle Bester; Pieter Theo Pepler; Johan T. Burger; Hans J. Maree
Plant Gene | 2017
Rachelle Bester; Johan T. Burger; Hans J. Maree