Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachelle E. Kaplon is active.

Publication


Featured researches published by Rachelle E. Kaplon.


Physiology | 2014

You're Only as Old as Your Arteries: Translational Strategies for Preserving Vascular Endothelial Function with Aging

Douglas R. Seals; Rachelle E. Kaplon; Rachel A. Gioscia-Ryan; Thomas J. LaRocca

Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health.


Clinical Science | 2013

Regular aerobic exercise protects against impaired fasting plasma glucose-associated vascular endothelial dysfunction with aging.

Allison E. DeVan; Iratxe Eskurza; Gary L. Pierce; Ashley E. Walker; Kristen L. Jablonski; Rachelle E. Kaplon; Douglas R. Seals

In the present study, we tested the hypothesis that age-associated vascular endothelial dysfunction is exacerbated by IFG (impaired fasting plasma glucose) and that regular aerobic exercise prevents this effect. Data were analysed from a cohort of 131 non-smoking men and women without overt clinical disease. Compared with young adult controls (age=24±1 years, n=29; values are means±S.E.M.), brachial artery FMD (flow-mediated dilation), a measure of conduit artery EDD (endothelium-dependent dilation), was 33% lower [7.93±0.33 against 5.27±0.37%Δ (% change), P<0.05] in MA/O (middle-aged/older) adults with NFG (normal fasting plasma glucose) (≤99 mg/dl, 62±1 years, n=35). In MA/O adults with IFG (100-125 mg/dl, 64±1 years, n=28), FMD was 30% lower (3.37±0.35%Δ) than in their peers with NFG and 58% lower than young controls (P<0.05). Brachial artery FMD was greater (6.38±0.35%Δ) in MA/O adults with NFG who regularly performed aerobic exercise (>45 min/day for ≥5 days/week, 62±1 years, n=23) compared with their non-exercising peers and only slightly less than young controls (P<0.05). Most importantly, FMD was completely preserved in MA/O adults with IFG who regularly performed aerobic exercise (6.99±0.69%Δ, 65±1 years, n=16). In the pooled sample, fasting plasma glucose was inversely related to FMD (r=-0.42, P<0.01) and was the strongest independent predictor of FMD (R(2)=0.32). Group differences in FMD were not affected by other subject characteristics or brachial artery properties, including brachial artery dilation to sublingual NTG (nitroglycerine, i.e. endothelium-independent dilation). IFG exacerbates age-associated vascular endothelial dysfunction and this adverse effect is completely prevented in MA/O adults who regularly perform aerobic exercise.


Hypertension | 2012

Fenofibrate Improves Vascular Endothelial Function by Reducing Oxidative Stress While Increasing Endothelial Nitric Oxide Synthase in Healthy Normolipidemic Older Adults

Ashley E. Walker; Rachelle E. Kaplon; Sara Marian S. Lucking; Molly J. Russell-Nowlan; Robert H. Eckel; Douglas R. Seals

Vascular endothelial dysfunction develops with aging, as indicated by impaired endothelium-dependent dilation, and is related to increased cardiovascular disease risk. We hypothesized that short-term treatment with fenofibrate, a lipid-lowering agent with potential pleiotropic effects, would improve endothelium-dependent dilation in middle-aged and older normolipidemic adults by reducing oxidative stress. Brachial artery flow-mediated dilation, a measure of endothelium-dependent dilation, was assessed in 22 healthy adults aged 50 to 77 years before and after 7 days of fenofibrate (145 mg/d; n=12) or placebo (n=10). Brachial flow-mediated dilation was unchanged with placebo, but improved after 2 and 7 days of fenofibrate (5.1±0.7 versus 2 days: 6.0±0.7 and 7 days: 6.4±0.6%&dgr;; both P<0.005). The improvements in flow-mediated dilation after 7 days remained significant (P<0.05) after accounting for modest changes in plasma total and low-density lipoprotein cholesterol. Endothelium-independent dilation was not affected by fenofibrate or placebo (P>0.05). Intravenous infusion of the antioxidant vitamin C improved brachial flow-mediated dilation at baseline in both groups and during placebo treatment (P<0.05), but not after 2 and 7 days of fenofibrate (P>0.05). Fenofibrate treatment also reduced plasma-oxidized low-density lipoprotein, a systemic marker of oxidative stress, compared with placebo (P<0.05). In vascular endothelial cells sampled from peripheral veins of the subjects, endothelial nitric oxide synthase protein expression was unchanged with placebo and after 2 days of fenofibrate, but was increased after 7 days of fenofibrate (0.54±0.03 versus 2 days: 0.52±0.04 and 7 days: 0.76±0.11 intensity/human umbilical vein endothelial cell control; P<0.05, 7 days). Short-term treatment with fenofibrate improves vascular endothelial function in healthy normolipidemic middle-aged and older adults by reducing oxidative stress and induces an increase in endothelial nitric oxide synthase.


Clinical Science | 2014

Prevention of age-related endothelial dysfunction by habitual aerobic exercise in healthy humans: possible role of nuclear factor κB.

Ashley E. Walker; Rachelle E. Kaplon; Gary L. Pierce; Molly J. Nowlan; Douglas R. Seals

Habitual aerobic exercise prevents age-related impairments in endothelium-dependent dilation (EDD). We have hypothesized that the pro-inflammatory transcription factor nuclear factor κB (NF-κB) impairs EDD with sedentary aging, and habitual aerobic exercise prevents this age-related suppression of EDD by NF-κB. To test this hypothesis, we have inhibited NF-κB signalling via oral salsalate administration in healthy older aerobic exercise-trained adults (OT, n=14, 58 ± 2 years), older non-exercising adults (ON, n=16, 61 ± 1 years) and young non-exercising controls (YN, n=8, 23 ± 1 years). Salsalate reduced endothelial cell expression of NF-κB p65 by ~25% in ON (P<0.05) but did not significantly change expression in OT or YN (P>0.05). EDD, assessed by brachial artery flow-mediated dilation (FMD), was improved by salsalate in ON (4.0 ± 0.7% compared with 6.8 ± 0.7%, placebo compared with salsalate, P<0.001) but did not change with salsalate in OT or YN (OT: 7.2 ± 0.7% compared with 7.7 ± 0.6%; YN: 7.6 ± 0.9% compared with 8.1 ± 0.8%; placebo compared with salsalate, P>0.05). Endothelium-independent dilation was not affected by salsalate in any group (P>0.05). In ON, vitamin C infusion improved FMD by ~30% during placebo (P<0.001) but had no affect during salsalate (P>0.05). In OT and YN, vitamin C infusion did not affect FMD during either placebo or salsalate (P>0.05). Salsalate reduced endothelial cell nitrotyrosine content by ~25% and NADPH oxidase p47phox expression by ~30% in ON (P<0.05) but had no effect in OT or YN (P>0.05). Our results suggest that endothelial NF-κB signalling is associated with oxidative stress-related impairment of EDD in healthy non-exercising but not aerobically exercising older adults. This may be a key mechanism by which regular aerobic exercise preserves endothelial function and reduces cardiovascular risk with aging.


Journal of Applied Physiology | 2011

Plasma norepinephrine is an independent predictor of vascular endothelial function with aging in healthy women

Rachelle E. Kaplon; Ashley E. Walker; Douglas R. Seals

We tested the hypothesis that reductions in vascular endothelial function (endothelium-dependent dilation, EDD) with age are related to increases in sympathetic activity. Among 314 healthy men and women, age was inversely related to brachial artery flow-mediated dilation (FMD) (r = -0.30, P < 0.001), a measure of EDD, and positively related to plasma norepinephrine concentrations (PNE), a marker of sympathetic activity (r = 0.49, P < 0.001). Brachial FMD was inversely related to PNE in all subjects (r = -0.25, P < 0.001) and in men (n = 187, r = -0.17, P = 0.02) and women (n = 127, r = -0.37, P < 0.001) separately. After controlling for PNE (multiple regression analysis), brachial FMD remained significantly related to age in all subjects (r = -0.20, P < 0.001) and in men (r = -0.23, P < 0.01), but not women (r = -0.16, P = 0.06). Consistent with this, brachial FMD remained significantly related to PNE when controlling for age (r = -0.24, P < 0.01) and menopause status (r = -0.24, P < 0.01) in women. Indeed, PNE was the strongest independent correlate of brachial FMD in women after controlling for conventional cardiovascular disease risk factors (r = -0.22, P = 0.01). This relation persisted in a subset of women (n = 113) after further accounting for the effects of plasma oxidized low-density lipoprotein (P < 0.05), a circulating marker of oxidative stress. Endothelium-independent dilation was not related to age in either men or women (P > 0.05). These results provide the first evidence that EDD is inversely related to sympathetic activity, as assessed by PNE, among healthy adults varying in age. In particular, our findings suggest that sympathetic nervous system activity may be a key factor involved in the modulation of vascular endothelial function with aging in women.


The Journal of Clinical Endocrinology and Metabolism | 2013

Activation of the Unfolded Protein Response in Vascular Endothelial Cells of Nondiabetic Obese Adults

Rachelle E. Kaplon; Eric Chung; Lauren Reese; Kimberly Cox-York; Douglas R. Seals; Christopher L. Gentile

CONTEXT Activation of the unfolded protein response (UPR) is emerging as an important molecular signature of cardiometabolic diseases associated with obesity. However, despite the well-established role of the vascular endothelium in obesity-related cardiometabolic dysfunction, it is unclear whether the UPR is activated in endothelial cells of obese adults. OBJECTIVE The objective of the study was to determine whether markers of UPR activation are increased in endothelial cells (ECs) of nondiabetic obese adults with impaired endothelial function. DESIGN, SETTING, AND PARTICIPANTS Endothelial cells were obtained from antecubital veins of the nondiabetic obese adults [body mass index (BMI) ≥ 30 kg/m(2), n = 12] with impaired endothelial function and from their nonobese peers (BMI < 30 kg/m(2), n = 14). MAIN OUTCOME VARIABLES UPR activation via expression (quantitative immunofluorescence) of the proximal UPR sensors, inositol-requiring endoplasmic reticulum (ER)-to-nucleus signaling protein 1 (IRE1), RNA-dependent protein kinase-like ER eukaryotic initiation factor-2α kinase (PERK), and activating transcription factor 6 (ATF6), were the main outcome variables. RESULTS IRE1 expression was greater in obese vs nonobese individuals (0.84 ± 0.09 vs 0.47 ± 0.02 IRE1 intensity/human umbilical vein EC (HUVEC) intensity (n = 10/8, P < .01). Obese individuals also had greater EC activation of UPR stress sensors PERK and ATF6, indicated by increased expression of phosphorylated PERK [p-PERK; 0.49 ± 0.05 vs 0.36 ± 0.03, p-PERK (threonine 981) intensity/HUVEC intensity, n = 10 men, 13 women, P < .05] and nuclear localization of ATF6 (0.38 ± 0.05 vs 0.23 ± 0.02, nuclear ATF6 intensity/HUVEC intensity, n = 5 men, 9 women, P < .01), respectively. Stepwise linear regression analysis revealed that indices of body fat (BMI and waist circumference) were the strongest independent predictors of all 3 UPR mediators, explaining between 18% and 59% of the variance in endothelial cell expression of IRE1, p-PERK, and nuclear ATF6 localization. CONCLUSION These results provide novel evidence for UPR activation in the endothelial cells of nondiabetic obese adults with vascular endothelial dysfunction.


Journal of Applied Physiology | 2014

Vascular endothelial function and oxidative stress are related to dietary niacin intake among healthy middle-aged and older adults

Rachelle E. Kaplon; Lindsey B. Gano; Douglas R. Seals

We tested the hypothesis that vascular endothelial function and oxidative stress are related to dietary niacin intake among healthy middle-aged and older adults. In 127 men and women aged 48-77 yr, brachial artery flow-mediated dilation (FMD) was positively related to dietary niacin intake [%change (Δ): r = 0.20, P < 0.05; mmΔ: r = 0.25, P < 0.01]. In subjects with above-average dietary niacin intake (≥ 22 mg/day, NHANES III), FMD was 25% greater than in subjects with below-average intake (P < 0.05). Stepwise linear regression revealed that dietary niacin intake (above vs. below average) was an independent predictor of FMD (%Δ: β = 1.8; mmΔ: β = 0.05, both P < 0.05). Plasma oxidized low-density lipoprotein, a marker of systemic oxidative stress, was inversely related to niacin intake (r = -0.23, P < 0.05) and was lower in subjects with above- vs. below-average niacin intake (48 ± 2 vs. 57 ± 2 mg/dl, P < 0.01). Intravenous infusion of the antioxidant vitamin C improved brachial FMD in subjects with below-average niacin intake (P < 0.001, n = 33), but not above-average (P > 0.05, n = 20). In endothelial cells sampled from the brachial artery of a subgroup, dietary niacin intake was inversely related to nitrotyrosine, a marker of peroxynitrite-mediated oxidative damage (r = -0.30, P < 0.05, n = 55), and expression of the prooxidant enzyme, NADPH oxidase (r = -0.44, P < 0.01, n = 37), and these markers were lower in subjects with above- vs. below-average niacin intake [nitrotyrosine: 0.39 ± 0.05 vs. 0.56 ± 0.07; NADPH oxidase: 0.38 ± 0.05 vs. 0.53 ± 0.05 (ratio to human umbilical vein endothelial cell control), both P < 0.05]. Our findings support the hypothesis that higher dietary niacin intake is associated with greater vascular endothelial function related to lower systemic and vascular oxidative stress among healthy middle-aged and older adults.


Journal of Hypertension | 2015

Reduced large elastic artery stiffness with regular aerobic exercise in middle-aged and older adults: potential role of suppressed nuclear factor κ B signalling.

Kristen L. Jablonski; Anthony J. Donato; Bradley S. Fleenor; Molly J. Nowlan; Ashley E. Walker; Rachelle E. Kaplon; Dov B. Ballak; Douglas R. Seals

Objective: Aortic pulse-wave velocity (aPWV) increases with age and is a strong independent predictor of incident cardiovascular diseases (CVDs) in healthy middle-aged and older adults. aPWV is lower in middle-aged and older adults who perform regular aerobic exercise than in their sedentary peers. As exercise is associated with reduced systemic inflammation, we hypothesized that suppression of the pro-inflammatory transcription factor nuclear factor &kgr; B (NF&kgr;B) may mediate this process. Methods: aPWV was measured in young sedentary [n = 10, blood pressure (BP) 108 ± 3/59 ± 2 mmHg; mean ± SEM], middle-aged and older sedentary (n = 9, 124 ± 7/73 ± 5 mmHg) and middle-aged and older aerobic exercise-trained (n = 12, 110 ± 4/67 ± 2 mmHg) healthy, nonhypertensive men and women. Results: Baseline aPWV increased with age [626 ± 14 (young sedentary) vs. 859 ± 49 (middle-aged and older sedentary) cm/s, P < 0.001] but was 20% lower in middle-aged and older trained (686 ± 30 cm/s) than in middle-aged and older sedentary (P < 0.005). Short-term (4 days x 2500–4500 mg) treatment with the NF&kgr;B inhibitor salsalate (randomized, placebo-controlled cross-over design) reduced aPWV (to 783 ± 44 cm/s, P < 0.05) without changing BP (P = 0.40) or heart rate (P = 0.90) in middle-aged and older sedentary, but had no effect in young sedentary (623 ± 19) or middle-aged and older trained (699 ± 30). Following salsalate treatment, aPWV no longer was significantly different in middle-aged and older sedentary vs. middle-aged and older trained (P = 0.29). The reduction in aPWV with salsalate administration was inversely related to baseline (placebo) aPWV (r = −0.60, P < 0.001). Conclusion: These results support the hypothesis that suppressed NF&kgr;B signalling may partially mediate the lower aortic stiffness in middle-aged and older adults who regularly perform aerobic exercise. Because aPWV predicts incident cardiovascular events in this population, this suggests that tonic suppression of NF&kgr;B signalling in middle-aged and older exercising adults may potentially lower cardiovascular risk.


Aging (Albany NY) | 2016

Oral trehalose supplementation improves resistance artery endothelial function in healthy middle-aged and older adults

Rachelle E. Kaplon; Sierra D. Hill; Nina Z. Bispham; Jessica R. Santos-Parker; Molly J. Nowlan; Laura L. Snyder; Michel Chonchol; Thomas J. LaRocca; Matthew B. McQueen; Douglas R. Seals

We hypothesized that supplementation with trehalose, a disaccharide that reverses arterial aging in mice, would improve vascular function in middle-aged and older (MA/O) men and women. Thirty-two healthy adults aged 50-77 years consumed 100 g/day of trehalose (n=15) or maltose (n=17, isocaloric control) for 12 weeks (randomized, double-blind). In subjects with Δbody mass<2.3kg (5 lb.), resistance artery endothelial function, assessed by forearm blood flow to brachial artery infusion of acetylcholine (FBFACh), increased ∼30% with trehalose (13.3±1.0 vs. 10.5±1.1 AUC, P=0.02), but not maltose (P=0.40). This improvement in FBFACh was abolished when endothelial nitric oxide (NO) production was inhibited. Endothelium-independent dilation, assessed by FBF to sodium nitroprusside (FBFSNP), also increased ∼30% with trehalose (155±13 vs. 116±12 AUC, P=0.03) but not maltose (P=0.92). Changes in FBFACh and FBFSNP with trehalose were not significant when subjects with Δbody mass≥2.3kg were included. Trehalose supplementation had no effect on conduit artery endothelial function, large elastic artery stiffness or circulating markers of oxidative stress or inflammation (all P>0.1) independent of changes in body weight. Our findings demonstrate that oral trehalose improves resistance artery (microvascular) function, a major risk factor for cardiovascular diseases, in MA/O adults, possibly through increasing NO bioavailability and smooth muscle sensitivity to NO.


American Journal of Physiology-heart and Circulatory Physiology | 2017

Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function

Matthew J. Rossman; Rachelle E. Kaplon; Sierra D. Hill; Molly N. McNamara; Jessica R. Santos-Parker; Gary L. Pierce; Douglas R. Seals; Anthony J. Donato

Cellular senescence is emerging as a key mechanism of age-related vascular endothelial dysfunction, but evidence in healthy humans is lacking. Moreover, the influence of lifestyle factors such as habitual exercise on endothelial cell (EC) senescence is unknown. We tested the hypothesis that EC senescence increases with sedentary, but not physically active, aging and is associated with vascular endothelial dysfunction. Protein expression (quantitative immunofluorescence) of p53, a transcription factor related to increased cellular senescence, and the cyclin-dependent kinase inhibitors p21 and p16 were 116%, 119%, and 128% greater (all P < 0.05), respectively, in ECs obtained from antecubital veins of older sedentary (60 ± 1 yr, n = 12) versus young sedentary (22 ± 1 yr, n = 9) adults. These age-related differences were not present (all P > 0.05) in venous ECs from older exercising adults (57 ± 1 yr, n = 13). Furthermore, venous EC protein levels of p53 (r = -0.49, P = 0.003), p21 (r = -0.38, P = 0.03), and p16 (r = -0.58, P = 0.002) were inversely associated with vascular endothelial function (brachial artery flow-mediated dilation). Similarly, protein expression of p53 and p21 was 26% and 23% higher (both P < 0.05), respectively, in ECs sampled from brachial arteries of healthy older sedentary (63 ± 1 yr, n = 18) versus young sedentary (25 ± 1 yr, n = 9) adults; age-related changes in arterial EC p53 and p21 expression were not observed (P > 0.05) in older habitually exercising adults (59 ± 1 yr, n = 14). These data indicate that EC senescence is associated with sedentary aging and is linked to endothelial dysfunction. Moreover, these data suggest that prevention of EC senescence may be one mechanism by which aerobic exercise protects against endothelial dysfunction with age.NEW & NOTEWORTHY Our study provides novel evidence in humans of increased endothelial cell senescence with sedentary aging, which is associated with impaired vascular endothelial function. Furthermore, our data suggest an absence of age-related increases in endothelial cell senescence in older exercising adults, which is linked with preserved vascular endothelial function.

Collaboration


Dive into the Rachelle E. Kaplon's collaboration.

Top Co-Authors

Avatar

Douglas R. Seals

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. LaRocca

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Rachel A. Gioscia-Ryan

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Molly J. Nowlan

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Robert H. Eckel

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Sierra D. Hill

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Allison E. DeVan

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge