Rachid Seqqat
Temple University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rachid Seqqat.
American Journal of Physiology-heart and Circulatory Physiology | 2009
Stephen C. Kolwicz; Scott M. MacDonnell; Brian F. Renna; Patricia O. Reger; Rachid Seqqat; Khadija Rafiq; Zebulon V. Kendrick; Steven R. Houser; Abdelkarim Sabri; Joseph R. Libonati
We investigated how exercise training superimposed on chronic hypertension impacted left ventricular remodeling. Cardiomyocyte hypertrophy, apoptosis, and proliferation in hearts from female spontaneously hypertensive rats (SHRs) were examined. Four-month-old SHR animals were placed into a sedentary group (SHR-SED; n = 18) or a treadmill running group (SHR-TRD, 20 m/min, 1 h/day, 5 days/wk, 12 wk; n = 18). Age-matched, sedentary Wistar Kyoto (WKY) rats were controls (n = 18). Heart weight was greater in SHR-TRD vs. both WKY (P < 0.01) and SHR-SED (P < 0.05). Morphometric-derived left ventricular anterior, posterior, and septal wall thickness were increased in SHR-SED relative to WKY and augmented in SHR-TRD. Cardiomyocyte surface area, length, and width were increased in SHR-SED relative to WKY and further increased in SHR-TRD. Calcineurin abundance was increased in SHR-SED vs. WKY (P < 0.001) and attenuated in SHR-TRD relative to SHR-SED (P < 0.05). Protein abundance and mRNA of Akt was not different among groups. The rate of apoptosis was increased in SHR-SED relative to WKY and mitigated in SHR-TRD. The abundance of Ki-67(+) cells across groups was not statistically different across groups. The abundance of cardiac progenitor cells (c-Kit(+) cells) was increased in SHR-TRD relative to WKY. These data suggest that exercise training superimposed on hypertension augmented cardiomyocyte hypertrophy, despite attenuating calcineurin abundance. Exercise training also mitigated apoptosis in hypertension and showed a tendency to enhance the abundance of cardiac progenitor cells, resulting in a more favorable cardiomyocyte number in the exercise-trained hypertensive heart.
Circulation Research | 2008
Abdelkarim Sabri; Khadija Rafiq; Rachid Seqqat; Mikhail A. Kolpakov; Ray Dillon; Louis J. Dell’Italia
We reported that left ventricular (LV) dilatation after 4 weeks of isolated mitral regurgitation (MR) in the dogs is marked by extracellular matrix loss and an increase in adrenergic drive. Given that extracellular matrix proteins and their receptor integrins influence β-adrenergic receptor (β-AR) responses in vitro, we tested whether β1-AR activation modulates focal adhesion (FA) signaling and LV remodeling in these same dogs with isolated MR. Normal dogs were compared with dogs with MR of a 4-week duration and with MR dogs treated with β1-AR blockade (β1-RB) (extended-release metoprolol succinate, 100 mg QD) that was started 24 hours after MR induction. In MR LVs, a decrease in collagen accumulation compared with normal dogs was associated with a decrease in FA kinase tyrosine phosphorylation, along with FA kinase interaction with adapter and cytoskeletal proteins, p130Cas and paxillin, respectively, as determined by immunoprecipitation assays. There was increased phosphorylation of stress related molecules p38 mitogen-activated protein kinase (MAPK) and Hsp27 and survival signaling kinases extracellular signal-regulated kinase 1/2 and AKT, with no evidence of cardiomyocyte apoptosis. β1-RB attenuated FA signaling loss and prevented p38 MAPK, Hsp27, and AKT phosphorylation induced by MR and significantly increased LV epicardial collagen content. However, β1-RB did not improve LV endocardial collagen loss or LV dilatation induced by MR. Isolated myocytes from normal and MR dog hearts treated with β1- or β2-AR agonists demonstrated no difference in FA kinase, p38 MAPK, Hsp27, or AKT phosphorylation. These results showed that chronic stimulation of β1-AR during early compensated MR impairs FA signaling that may affect myocyte/fibroblast–extracellular matrix scaffolding necessary for LV remodeling.
Free Radical Biology and Medicine | 2011
Sandeep Kumar; Rachid Seqqat; Sravanthi Chigurupati; Rajesh Kumar; Kenneth M. Baker; David Young; Subha Sen; Sudhiranjan Gupta
Myocardial remodeling denotes a chronic pathological condition of dysfunctional myocardium that occurs in cardiac hypertrophy (CH) and heart failure (HF). Reactive oxygen species (ROS) are major initiators of excessive collagen and fibronectin deposition in cardiac fibrosis. Increased production of ROS and nuclear factor κB (NF-κB) activation provide a strong link between oxidative stress and extracellular matrix (ECM) remodeling in cardiac hypertrophy. The protective inhibitory actions of pyrrolidine dithiocarbamate (PDTC), a pharmacological inhibitor of NF-κB and a potent antioxidant, make this a good agent to evaluate the role of inhibition of NF-κB and prevention of excessive ECM deposition in maladaptive cardiac remodeling during HF. In this report, we used a transgenic mouse model (Myo-Tg) that has cardiac-specific overexpression of myotrophin. This overexpression of myotrophin in the Myo-Tg model directs ECM deposition and increased NF-κB activity, which result in CH and ultimately HF. Using the Myo-Tg model, our data showed upregulation of profibrotic genes (including collagen types I and III, connective tissue growth factor, and fibronectin) in Myo-Tg mice, compared to wild-type mice, during the progression of CH. Pharmacological inhibition of NF-κB by PDTC in the Myo-Tg mice resulted in a significant reduction in cardiac mass, NF-κB activity, and profibrotic gene expression and improved cardiac function. To the best of our knowledge, this is the first report of ECM regulation by inhibition of NF-κB activation by PDTC. The study highlights the importance of the NF-κB signaling pathway and therapeutic benefits of PDTC treatment in cardiac remodeling.
Circulation | 2014
Khadija Rafiq; Mikhail A. Kolpakov; Rachid Seqqat; Jianfen Guo; Xinji Guo; Zhao Qi; Daohai Yu; Bhopal Mohapatra; Neha Zutshi; Wei An; Hamid Band; Archana Sanjay; Steven R. Houser; Abdelkarim Sabri
Background— The proto-oncogene Casitas b-lineage lymphoma (c-Cbl) is an adaptor protein with an intrinsic E3 ubiquitin ligase activity that targets receptor and nonreceptor tyrosine kinases, resulting in their ubiquitination and downregulation. However, the function of c-Cbl in the control of cardiac function is currently unknown. In this study, we examined the role of c-Cbl in myocyte death and cardiac function after myocardial ischemia. Methods and Results— We show increased c-Cbl expression in human ischemic and dilated cardiomyopathy hearts and in response to pathological stress stimuli in mice. c-Cbl–deficient mice demonstrated a more robust functional recovery after myocardial ischemia/reperfusion injury and significantly reduced myocyte apoptosis and improved cardiac function. Ubiquitination and downregulation of key survival c-Cbl targets, epidermal growth factor receptors and focal adhesion kinase, were significantly reduced in c-Cbl knockout mice. Inhibition of c-Cbl expression or its ubiquitin ligase activity in cardiac myocytes offered protection against H2O2 stress. Interestingly, c-Cbl deletion reduced the risk of death and increased cardiac functional recovery after chronic myocardial ischemia. This beneficial effect of c-Cbl deletion was associated with enhanced neoangiogenesis and increased expression of vascular endothelial growth factor-a and vascular endothelial growth factor receptor type 2 in the infarcted region. Conclusions— c-Cbl activation promotes myocyte apoptosis, inhibits angiogenesis, and causes adverse cardiac remodeling after myocardial infarction. These findings point to c-Cbl as a potential therapeutic target for the maintenance of cardiac function and remodeling after myocardial ischemia.
Journal of Molecular and Cellular Cardiology | 2012
Rachid Seqqat; Xinji Guo; Khadija Rafiq; Mikhail A. Kolpakov; Jianfen Guo; Walter J. Koch; Steven R. Houser; Louis J. Dell'Italia; Abdelkarim Sabri
Numerous studies demonstrated increased expression of extracellular matrix (ECM) proteins and activation of focal adhesion (FA) signaling pathways in models of pressure overload-induced cardiac hypertrophy. However, little is known about FA signaling in response to volume overload where cardiac hypertrophy is associated with ECM loss. This study examines the role of beta1-adrenergic receptors (β(1)-ARs) in FA signaling changes and myocyte apoptosis induced during acute hemodynamic stress of volume overload. Rats with eccentric cardiac hypertrophy induced after aorto-caval fistula (ACF) develop reduced interstitial collagen content and decreased tyrosine phosphorylation of key FA signaling molecules FAK, Pyk(2) and paxillin along with an increase in cardiac myocyte apoptosis. ACF also increased activation of PTEN, a dual lipid and protein phosphatase, and its interaction with FA proteins. β(1)-AR blockade (extended-release of metoprolol succinate, 100mg QD) markedly attenuated PTEN activation, restored FA signaling and reduced myocyte apoptosis induced by ACF at 2days, but failed to reduce interstitial collagen loss and left ventricular dilatation. Treating cultured myocytes with β(1)-AR agonists or adenoviral expression of β(1)-ARs caused PTEN activation and interaction with FA proteins, thus leading to FA signaling downregulation and myocyte apoptosis. Adenoviral-mediated expression of a catalytically inactive PTEN mutant or wild-type FAK restored FA signaling downregulation and attenuated myocyte apoptosis induced by β(1)-ARs. Collectively, these data show that β(1)-AR stimulation in response to ACF induces FA signaling downregulation through an ECM-independent mechanism. This effect involves PTEN activation and may contribute to adverse cardiac remodeling and function in the course of volume overload.
Journal of Molecular and Cellular Cardiology | 2009
Mikhail A. Kolpakov; Rachid Seqqat; Khadija Rafiq; Hang Xi; Kennneth B. Margulies; Joseph R. Libonati; Pamela Powel; Steven R. Houser; Louis J. Dell'Italia; Abdelkarim Sabri
Most of the available evidence on the role of neutrophils on pathological cardiac remodeling has been pertained after acute myocardial infarction. However, whether neutrophils directly contribute to the pathogenesis of cardiac remodeling after events other than acute myocardial infarction remains unknown. Here we show that acute eccentric hypertrophy induced by aorto-caval fistula (ACF) in the rats induced an increase in the inflammatory response characterized by activation of the STAT pathway and increased infiltration of neutrophils in the myocardium. This early inflammation was associated with a decrease in interstitial collagen accumulation and an increase in myocyte apoptosis. Neutrophil infiltration blockade attenuated MMP activation, ECM degradation, and myocyte apoptosis induced by ACF at 24 hours and attenuated the development of eccentric hypertrophy induced by ACF at 2 and 3 weeks, suggesting a causal relationship between neutrophils and the ACF-induced cardiac remodeling. In contrast, sustained neutrophil depletion over 4 weeks resulted in adverse cardiac remodeling with further increase in cardiac dilatation and macrophage infiltration, but with no change in myocyte apoptosis level. These data support a functional role for neutrophils in MMP activation, ECM degradation, and myocyte apoptosis during eccentric cardiac hypertrophy and underscore the adverse effects of chronic anti-neutrophil therapy on cardiac remodeling induced by early volume overload.
American Journal of Physiology-heart and Circulatory Physiology | 2012
Sandeep Kumar; Chuanyu Wei; Candice M. Thomas; Il-Kwon Kim; Rachid Seqqat; Rajesh Kumar; Kenneth M. Baker; W. Keith Jones; Sudhiranjan Gupta
Circulation | 2016
Mikhail A. Kolpakov; Xinji Guo; Bahman Hooshdaran; Khadija Rafiq; Yulia V. Bashkirova; Liudmila Vlasenko; Tao Wang; Rachid Seqqat; Satya P. Kunapuli; Steven R. Houser; Abdelkarim Sabri
Circulation Research | 2012
Khadija Rafiq; Mikhail A. Kolpakov; Rachid Seqqat; Jianfen Guo; Xinji Guo; Archana Sanjay; Steven R. Houser; Abdelkarim Sabri
The FASEB Journal | 2009
Rachid Seqqat; Khadija Rafiq; Marie Hanscom; Kenneth B. Margulies; Steven R. Houser; Louis J. Dell'Italia; Abdelkarim Sabri