Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachid Sougrat is active.

Publication


Featured researches published by Rachid Sougrat.


Science | 2006

Imaging intracellular fluorescent proteins at nanometer resolution.

Eric Betzig; George H. Patterson; Rachid Sougrat; O. Wolf Lindwasser; Scott G. Olenych; Juan S. Bonifacino; Michael W. Davidson; Jennifer Lippincott-Schwartz; Harald F. Hess

We introduce a method for optically imaging intracellular proteins at nanometer spatial resolution. Numerous sparse subsets of photoactivatable fluorescent protein molecules were activated, localized (to ∼2 to 25 nanometers), and then bleached. The aggregate position information from all subsets was then assembled into a superresolution image. We used this method—termed photoactivated localization microscopy—to image specific target proteins in thin sections of lysosomes and mitochondria; in fixed whole cells, we imaged vinculin at focal adhesions, actin within a lamellipodium, and the distribution of the retroviral protein Gag at the plasma membrane.


PLOS Pathogens | 2010

Multilayered Mechanism of CD4 Downregulation by HIV-1 Vpu Involving Distinct ER Retention and ERAD Targeting Steps

Javier G. Magadán; F. Javier Pérez-Victoria; Rachid Sougrat; Yihong Ye; Klaus Strebel; Juan S. Bonifacino

A key function of the Vpu protein of HIV-1 is the targeting of newly-synthesized CD4 for proteasomal degradation. This function has been proposed to occur by a mechanism that is fundamentally distinct from the cellular ER-associated degradation (ERAD) pathway. However, using a combination of genetic, biochemical and morphological methodologies, we find that CD4 degradation induced by Vpu is dependent on a key component of the ERAD machinery, the VCP-UFD1L-NPL4 complex, as well as on SCFβ-TrCP-dependent ubiquitination of the CD4 cytosolic tail on lysine and serine/threonine residues. When degradation of CD4 is blocked by either inactivation of the VCP-UFD1L-NPL4 complex or prevention of CD4 ubiquitination, Vpu still retains the bulk of CD4 in the ER mainly through transmembrane domain interactions. Addition of a strong ER export signal from the VSV-G protein overrides this retention. Thus, Vpu exerts two distinct activities in the process of downregulating CD4: ER retention followed by targeting to late stages of ERAD. The multiple levels at which Vpu engages these cellular quality control mechanisms underscore the importance of ensuring profound suppression of CD4 to the life cycle of HIV-1.


Cell | 2010

Mitochondria Supply Membranes for Autophagosome Biogenesis during Starvation

Dale W. Hailey; Angelika S. Rambold; Prasanna Satpute-Krishnan; Kasturi Mitra; Rachid Sougrat; Peter K. Kim; Jennifer Lippincott-Schwartz

Starvation-induced autophagosomes engulf cytosol and/or organelles and deliver them to lysosomes for degradation, thereby resupplying depleted nutrients. Despite advances in understanding the molecular basis of this process, the membrane origin of autophagosomes remains unclear. Here, we demonstrate that, in starved cells, the outer membrane of mitochondria participates in autophagosome biogenesis. The early autophagosomal marker, Atg5, transiently localizes to punctae on mitochondria, followed by the late autophagosomal marker, LC3. The tail-anchor of an outer mitochondrial membrane protein also labels autophagosomes and is sufficient to deliver another outer mitochondrial membrane protein, Fis1, to autophagosomes. The fluorescent lipid NBD-PS (converted to NBD-phosphotidylethanolamine in mitochondria) transfers from mitochondria to autophagosomes. Photobleaching reveals membranes of mitochondria and autophagosomes are transiently shared. Disruption of mitochondria/ER connections by mitofusin2 depletion dramatically impairs starvation-induced autophagy. Mitochondria thus play a central role in starvation-induced autophagy, contributing membrane to autophagosomes.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure.

Gleb Shtengel; James A. Galbraith; Catherine G. Galbraith; Jennifer Lippincott-Schwartz; Jennifer M. Gillette; Suliana Manley; Rachid Sougrat; Clare M. Waterman; Pakorn Kanchanawong; Michael W. Davidson; Richard D. Fetter; Harald F. Hess

Understanding molecular-scale architecture of cells requires determination of 3D locations of specific proteins with accuracy matching their nanometer-length scale. Existing electron and light microscopy techniques are limited either in molecular specificity or resolution. Here, we introduce interferometric photoactivated localization microscopy (iPALM), the combination of photoactivated localization microscopy with single-photon, simultaneous multiphase interferometry that provides sub-20-nm 3D protein localization with optimal molecular specificity. We demonstrate measurement of the 25-nm microtubule diameter, resolve the dorsal and ventral plasma membranes, and visualize the arrangement of integrin receptors within endoplasmic reticulum and adhesion complexes, 3D protein organization previously resolved only by electron microscopy. iPALM thus closes the gap between electron tomography and light microscopy, enabling both molecular specification and resolution of cellular nanoarchitecture.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Dynamics of endosomal sorting complex required for transport (ESCRT) machinery during cytokinesis and its role in abscission

Natalie Elia; Rachid Sougrat; Tighe A. Spurlin; James H. Hurley; Jennifer Lippincott-Schwartz

The final stage of cytokinesis is abscission, the cutting of the narrow membrane bridge connecting two daughter cells. The endosomal sorting complex required for transport (ESCRT) machinery is required for cytokinesis, and ESCRT-III has membrane scission activity in vitro, but the role of ESCRTs in abscission has been undefined. Here, we use structured illumination microscopy and time-lapse imaging to dissect the behavior of ESCRTs during abscission. Our data reveal that the ESCRT-I subunit tumor-susceptibility gene 101 (TSG101) and the ESCRT-III subunit charged multivesicular body protein 4b (CHMP4B) are sequentially recruited to the center of the intercellular bridge, forming a series of cortical rings. Late in cytokinesis, however, CHMP4B is acutely recruited to the narrow constriction site where abscission occurs. The ESCRT disassembly factor vacuolar protein sorting 4 (VPS4) follows CHMP4B to this site, and cell separation occurs immediately. That arrival of ESCRT-III and VPS4 correlates both spatially and temporally with the abscission event suggests a direct role for these proteins in cytokinetic membrane abscission.


Nature Cell Biology | 2011

A role for actin arcs in the leading-edge advance of migrating cells

Dylan T. Burnette; Suliana Manley; Prabuddha Sengupta; Rachid Sougrat; Michael W. Davidson; Bechara Kachar; Jennifer Lippincott-Schwartz

Epithelial cell migration requires coordination of two actin modules at the leading edge: one in the lamellipodium and one in the lamella. How the two modules connect mechanistically to regulate directed edge motion is not understood. Using live-cell imaging and photoactivation approaches, we demonstrate that the actin network of the lamellipodium evolves spatio-temporally into the lamella. This occurs during the retraction phase of edge motion, when myosin II redistributes to the lamellipodial actin and condenses it into an actin arc parallel to the edge. The new actin arc moves rearward, slowing down at focal adhesions in the lamella. We propose that net edge extension occurs by nascent focal adhesions advancing the site at which new actin arcs slow down and form the base of the next protrusion event. The actin arc thereby serves as a structural element underlying the temporal and spatial connection between the lamellipodium and the lamella during directed cell motion.


Journal of Biological Chemistry | 2002

Impaired Stratum Corneum Hydration in Mice Lacking Epidermal Water Channel Aquaporin-3

Tonghui Ma; Mariko Hara; Rachid Sougrat; Jean-Marc Verbavatz; A. S. Verkman

The water and solute transporting properties of the epidermis have been proposed to be important determinants of skin moisture content and barrier properties. The water/small solute-transporting protein aquaporin-3 (AQP3) was found by immunofluorescence and immunogold electron microscopy to be expressed at the plasma membrane of epidermal keratinocytes in mouse skin. We studied the role of AQP3 in stratum corneum (SC) hydration by comparative measurements in wild-type and AQP3 null mice generated in a hairless SKH1 genetic background. The hairless AQP3 null mice had normal perinatal survival, growth, and serum chemistries but were polyuric because of defective urinary concentrating ability. AQP3 deletion resulted in a >4-fold reduced osmotic water permeability and >2-fold reduced glycerol permeability in epidermis. Epidermal, dermal, and SC thickness and morphology were not grossly affected by AQP3 deletion. Surface conductance measurements showed remarkably reduced SC water content in AQP3 null mice in the hairless genetic background (165 ± 10 versus 269 ± 12 microsiemens (μS), p < 0.001), as well as in a CD1 genetic background (209 ± 21 versus 469 ± 11 μS). Reduced SC hydration was seen from 3 days after birth. SC hydration in hairless wild-type and AQP3 null mice was reduced to comparable levels (90–100 μS) after a 24-h exposure to a dry atmosphere, but the difference was increased when surface evaporation was prevented by occlusion or exposure to a humidified atmosphere (179 ± 13versus 441 ± 34 μS). Conductance measurements after serial tape stripping suggested reduced water content throughout the SC in AQP3 null mice. Water sorption-desorption experiments indicated reduced water holding capacity in the SC of AQP3 null mice. The impaired skin hydration in AQP3 null mice provides the first functional evidence for the involvement of AQP3 in skin physiology. Modulation of AQP3 expression or function may thus alter epidermal moisture content and water loss in skin diseases.


ACS Nano | 2011

Switchable pH-Responsive Polymeric Membranes Prepared via Block Copolymer Micelle Assembly

Suzana P. Nunes; Ali Reza Behzad; Bobby Hooghan; Rachid Sougrat; Madhavan Karunakaran; Neelakanda Pradeep; Ulla Vainio; Klaus-Viktor Peinemann

A process is described to manufacture monodisperse asymmetric pH-responsive nanochannels with very high densities (pore density >2 × 10(14) pores per m(2)), reproducible in m(2) scale. Cylindric pores with diameters in the sub-10 nm range and lengths in the 400 nm range were formed by self-assembly of metal-block copolymer complexes and nonsolvent-induced phase separation. The film morphology was tailored by taking into account the stability constants for a series of metal-polymer complexes and confirmed by AFM. The distribution of metal-copolymer micelles was imaged by transmission electron microscopy tomography. The pH response of the polymer nanochannels is the strongest reported with synthetic pores in the nm range (reversible flux increase of more than 2 orders of magnitude when switching the pH from 2 to 8) and could be demonstrated by cryo-field emission scanning electron microscopy, SAXS, and ultra/nanofiltration experiments.


Blood | 2010

Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway

Lyora A. Cohen; Lucía Gutiérrez; Avital Weiss; Yael Leichtmann-Bardoogo; De-Liang Zhang; Daniel R. Crooks; Rachid Sougrat; Avigail Morgenstern; Bruno Galy; Matthias W. Hentze; Francisco J. Lazaro; Tracey A. Rouault; Esther G. Meyron-Holtz

The serum ferritin concentration is a clinical parameter measured widely for the differential diagnosis of anemia. Its levels increase with elevations of tissue iron stores and with inflammation, but studies on cellular sources of serum ferritin as well as its subunit composition, degree of iron loading and glycosylation have given rise to conflicting results. To gain further understanding of serum ferritin, we have used traditional and modern methodologies to characterize mouse serum ferritin. We find that both splenic macrophages and proximal tubule cells of the kidney are possible cellular sources for serum ferritin and that serum ferritin is secreted by cells rather than being the product of a cytosolic leak from damaged cells. Mouse serum ferritin is composed mostly of L-subunits, whereas it contains few H-subunits and iron content is low. L-subunits of serum ferritin are frequently truncated at the C-terminus, giving rise to a characteristic 17-kD band that has been previously observed in lysosomal ferritin. Taken together with the fact that mouse serum ferritin is not detectably glycosylated, we propose that mouse serum ferritin is secreted through the nonclassical lysosomal secretory pathway.


Advanced Materials | 2012

Solution‐Processed Small Molecule‐Polymer Blend Organic Thin‐Film Transistors with Hole Mobility Greater than 5 cm2/Vs

Jeremy Smith; Weimin Zhang; Rachid Sougrat; Kui Zhao; Ruipeng Li; Dongkyu Cha; Aram Amassian; Martin Heeney; Iain McCulloch; Thomas D. Anthopoulos

Using phase-separated organic semiconducting blends containing a small molecule, as the hole transporting material, and a conjugated amorphous polymer, as the binder material, we demonstrate solution-processed organic thin-film transistors with superior performance characteristics that include; hole mobility >5 cm(2) /Vs, current on/off ratio ≥10(6) and narrow transistor parameter spread. These exceptional characteristics are attributed to the electronic properties of the binder polymer and the advantageous nanomorphology of the blend film.

Collaboration


Dive into the Rachid Sougrat's collaboration.

Top Co-Authors

Avatar

Suzana P. Nunes

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dalaver H. Anjum

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ali Reza Behzad

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klaus-Viktor Peinemann

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Niveen M. Khashab

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Adel Najar

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Juan S. Bonifacino

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge