Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachida Tahar is active.

Publication


Featured researches published by Rachida Tahar.


The New England Journal of Medicine | 2016

A Worldwide Map of Plasmodium falciparum K13-Propeller Polymorphisms.

Didier Ménard; Nimol Khim; Johann Beghain; Ayola A. Adegnika; Mohammad Shafiul-Alam; Olukemi K. Amodu; Ghulam Rahim-Awab; Céline Barnadas; Antoine Berry; Yap Boum; Maria D. Bustos; Jun Cao; Jun-Hu Chen; Louis Collet; Liwang Cui; Garib-Das Thakur; Alioune Dieye; Djibrine Djalle; Monique A. Dorkenoo; Carole E. Eboumbou-Moukoko; Fe-Esperanza-Caridad J. Espino; Thierry Fandeur; Maria-Fatima Ferreira-da-Cruz; Abebe A. Fola; Hans-Peter Fuehrer; Abdillahi M. Hassan; Sócrates Herrera; Bouasy Hongvanthong; Sandrine Houzé; Maman L. Ibrahim

BACKGROUND Recent gains in reducing the global burden of malaria are threatened by the emergence of Plasmodium falciparum resistance to artemisinins. The discovery that mutations in portions of a P. falciparum gene encoding kelch (K13)-propeller domains are the major determinant of resistance has provided opportunities for monitoring such resistance on a global scale. METHODS We analyzed the K13-propeller sequence polymorphism in 14,037 samples collected in 59 countries in which malaria is endemic. Most of the samples (84.5%) were obtained from patients who were treated at sentinel sites used for nationwide surveillance of antimalarial resistance. We evaluated the emergence and dissemination of mutations by haplotyping neighboring loci. RESULTS We identified 108 nonsynonymous K13 mutations, which showed marked geographic disparity in their frequency and distribution. In Asia, 36.5% of the K13 mutations were distributed within two areas--one in Cambodia, Vietnam, and Laos and the other in western Thailand, Myanmar, and China--with no overlap. In Africa, we observed a broad array of rare nonsynonymous mutations that were not associated with delayed parasite clearance. The gene-edited Dd2 transgenic line with the A578S mutation, which expresses the most frequently observed African allele, was found to be susceptible to artemisinin in vitro on a ring-stage survival assay. CONCLUSIONS No evidence of artemisinin resistance was found outside Southeast Asia and China, where resistance-associated K13 mutations were confined. The common African A578S allele was not associated with clinical or in vitro resistance to artemisinin, and many African mutations appear to be neutral. (Funded by Institut Pasteur Paris and others.).


Antimicrobial Agents and Chemotherapy | 2008

Hitchhiking and Selective Sweeps of Plasmodium falciparum Sulfadoxine and Pyrimethamine Resistance Alleles in a Population from Central Africa

Andrea M. McCollum; Leonardo K. Basco; Rachida Tahar; Venkatachalam Udhayakumar; Ananias A. Escalante

ABSTRACT Sulfadoxine-pyrimethamine (SP) resistance in Plasmodium falciparum is encoded by a number of mutations in the dihydrofolate reductase (dhfr) and dihydropteroate synthetase (dhps) genes. Here, we have characterized point mutations in dhfr and dhps and microsatellite loci around dhfr on chromosome 4 and dhps on chromosome 8 as well as neutral markers on chromosomes 2 and 3 in 332 samples from Yaoundé, Cameroon. The triple mutant dhfr haplotype that originated in Southeast Asia is the most predominant in this sample set, but we also find additional independent haplotypes at low frequency and an incipient process of genetic differentiation among alleles of Southeast Asian origin. As reported for other African populations, we find evidence of a selective sweep for resistant dhfr mutants in this Cameroonian population due to drug selection. Although we find evidence for a selective sweep in dhps mutants associated with SP resistance, the dynamics of dhps mutants appear different than those observed for dhfr mutants. Overall, our results yield support for the use of microsatellite markers to track resistant parasites; however, the detection of resistant dhfr alleles in low frequency, the evidence of divergence among dhfr alleles that share a common evolutionary origin, and the distinct dynamics of resistant dhps alleles emphasize the importance of comprehensive, population-based investigations to evaluate the effects of drug selection on parasite populations.


Journal of Medicinal Chemistry | 2010

Synthesis and antiplasmodial activity of new indolone N-oxide derivatives.

Françoise Nepveu; Sothea Kim; Jeremie Boyer; Olivier Chatriant; Hany Ibrahim; Karine Reybier; Marie-Carmen Monje; Séverine Chevalley; Pierre Perio; Barbora Lajoie; Jalloul Bouajila; Eric Deharo; Michel Sauvain; Rachida Tahar; Leonardo K. Basco; Antonella Pantaleo; Francesco Turini; Paolo Arese; Alexis Valentin; Eloise Thompson; Livia Vivas; Serge Petit; Jean-Pierre Nallet

A series of 66 new indolone-N-oxide derivatives was synthesized with three different methods. Compounds were evaluated for in vitro activity against CQ-sensitive (3D7), CQ-resistant (FcB1), and CQ and pyrimethamine cross-resistant (K1) strains of Plasmodium falciparum (P.f.), as well as for cytotoxic concentration (CC(50)) on MCF7 and KB human tumor cell lines. Compound 26 (5-methoxy-indolone-N-oxide analogue) had the most potent antiplasmodial activity in vitro (<3 nM on FcB1 and = 1.7 nM on 3D7) with a very satisfactory selectivity index (CC(50) MCF7/IC(50) FcB1: 14623; CC(50) KB/IC(50) 3D7: 198823). In in vivo experiments, compound 1 (dioxymethylene derivatives of the indolone-N-oxide) showed the best antiplasmodial activity against Plasmodium berghei, 62% inhibition of the parasitaemia at 30 mg/kg/day.


PLOS ONE | 2014

Differences in Gene Transcriptomic Pattern of Plasmodium falciparum in Children with Cerebral Malaria and Asymptomatic Carriers

Talleh Almelli; Gregory Nuel; Emmanuel Bischoff; Agnès Aubouy; Mohamed Elati; Christian W. Wang; Marie-Agnès Dillies; Jean-Yves Coppée; Georges Nko Ayissi; Leonardo K. Basco; Christophe Rogier; Nicaise Tuikue Ndam; Philippe Deloron; Rachida Tahar

The mechanisms underlying the heterogeneity of clinical malaria remain largely unknown. We hypothesized that differential gene expression contributes to phenotypic variation of parasites which results in a specific interaction with the host, leading to different clinical features of malaria. In this study, we analyzed the transcriptomes of isolates obtained from asymptomatic carriers and patients with uncomplicated or cerebral malaria. We also investigated the transcriptomes of 3D7 clone and 3D7-Lib that expresses severe malaria associated-variant surface antigen. Our findings revealed a specific up-regulation of genes involved in pathogenesis, adhesion to host cell, and erythrocyte aggregation in parasites from patients with cerebral malaria and 3D7-Lib, compared to parasites from asymptomatic carriers and 3D7, respectively. However, we did not find any significant difference between the transcriptomes of parasites from cerebral malaria and uncomplicated malaria, suggesting similar transcriptomic pattern in these two parasite populations. The difference between isolates from asymptomatic children and cerebral malaria concerned genes coding for exported proteins, Maurers cleft proteins, transcriptional factor proteins, proteins implicated in protein transport, as well as Plasmodium conserved and hypothetical proteins. Interestingly, UPs A1, A2, A3 and UPs B1 of var genes were predominantly found in cerebral malaria-associated isolates and those containing architectural domains of DC4, DC5, DC13 and their neighboring rif genes in 3D7-lib. Therefore, more investigations are needed to analyze the effective role of these genes during malaria infection to provide with new knowledge on malaria pathology. In addition, concomitant regulation of genes within the chromosomal neighborhood suggests a common mechanism of gene regulation in P. falciparum.


Infection, Genetics and Evolution | 2014

Genetic diversity of VAR2CSA ID1-DBL2Xb in worldwide Plasmodium falciparum populations: impact on vaccine design for placental malaria.

Bita Bordbar; Nicaise Tuikue Ndam; Emmanuelle Renard; Sayeh Jafari-Guemouri; Livingstone Tavul; Charlie Jennison; Sédami Gnidehou; Rachida Tahar; Dionicia Gamboa; Didier Ménard; Alyssa E. Barry; Philippe Deloron; Audrey Sabbagh

In placental malaria (PM), sequestration of infected erythrocytes in the placenta is mediated by an interaction between VAR2CSA, a Plasmodium falciparum protein expressed on erythrocytes, and chondroitin sulfate A (CSA) on syncytiotrophoblasts. Recent works have identified ID1-DBL2Xb as the minimal CSA-binding region within VAR2CSA able to induce strong protective immunity, making it the leading candidate for the development of a vaccine against PM. Assessing the existence of population differences in the distribution of ID1-DBL2Xb polymorphisms is of paramount importance to determine whether geographic diversity must be considered when designing a candidate vaccine based on this fragment. In this study, we examined patterns of sequence variation of ID1-DBL2Xb in a large collection of P. falciparum field isolates (n=247) from different malaria-endemic areas, including Africa (Benin, Senegal, Cameroon and Madagascar), Asia (Cambodia), Oceania (Papua New Guinea), and Latin America (Peru). Detection of variants and estimation of their allele frequencies were performed using next-generation sequencing of DNA pools. A considerable amount of variation was detected along the whole gene segment, suggesting that several allelic variants may need to be included in a candidate vaccine to achieve broad population coverage. However, most sequence variants were common and extensively shared among worldwide parasite populations, demonstrating long term persistence of those polymorphisms, probably maintained through balancing selection. Therefore, a vaccine mixture including such stable antigen variants will be putatively applicable and efficacious in all world regions where malaria occurs. Despite similarity in ID1-DBL2Xb allele repertoire across geographic areas, several peaks of strong population differentiation were observed at specific polymorphic loci, pointing out putative targets of humoral immunity subject to positive immune selection.


The Journal of Infectious Diseases | 2015

High Plasma Levels of Soluble Endothelial Protein C Receptor Are Associated With Increased Mortality Among Children With Cerebral Malaria in Benin

Azizath Moussiliou; Maroufou J. Alao; Lise Denoeud-Ndam; Rachida Tahar; Sem Ezimegnon; Gratien Sagbo; Annick Amoussou; Adrian J. F. Luty; Philippe Deloron; Nicaise Tuikue Ndam

Loss of endothelial protein C receptor (EPCR) occurs at the sites of Plasmodium falciparum-infected erythrocyte sequestration in patients with or who died from cerebral malaria. In children presenting with different clinical syndromes of malaria, we assessed the relationships between endogenous plasma soluble EPCR (sEPCR) levels and clinical presentation or mortality. After adjustment for age, for treatment before admission, and for a known genetic factor, sEPCR level at admission was positively associated with cerebral malaria (P = .011) and with malaria-related mortality (P = .0003). Measuring sEPCR levels at admission could provide an early biological marker of the outcome of cerebral malaria.


Malaria Journal | 2014

Cytoadherence phenotype of Plasmodium falciparum- infected erythrocytes is associated with specific pfemp-1 expression in parasites from children with cerebral malaria

Talleh Almelli; Nicaise Tuikue Ndam; Sem Ezimegnon; Maroufou J. Alao; Charles Ahouansou; Gratien Sagbo; Annick Amoussou; Philippe Deloron; Rachida Tahar

BackgroundCytoadherence of Plasmodium falciparum- infected erythrocytes (IEs) in deep microvasculature endothelia plays a major role in the pathogenesis of cerebral malaria (CM). This biological process is thought to be mediated by P. falciparum erythrocyte membrane protein-1 (PfEMP-1) and human receptors such as CD36 and ICAM-1. The relationship between the expression of PfEMP-1 variants and cytoadherence phenotype in the pathology of malaria is not well established.MethodsCytoadherence phenotypes of IEs to CD36, ICAM-1, CSPG and the transcription patterns of A, B, var2csa, var3, var gene groups and domain cassettes DC8 and DC13 were assessed in parasites from children with CM and uncomplicated malaria (UM) to determine if cytoadherence is related to a specific transcription profile of pfemp-1 variants.ResultsParasites from CM patients bind significantly more to CD36 than those from UM patients, but no difference was observed in their binding ability to ICAM-1 and CSPG. CM isolates highly transcribed groups A, B, var2csa, var3, DC8 and DC13 compared to UM parasites. The high transcription levels of var genes belonging to group B positively correlated with increased binding level to CD36.ConclusionCM isolates bind significantly more to CD36 than to ICAM-1, which was correlated with high transcription level of group B var genes, supporting their implication in malaria pathogenesis.


American Journal of Tropical Medicine and Hygiene | 2011

Molecular Epidemiology of Malaria in Cameroon. XXX. Sequence Analysis of Plasmodium falciparum ATPase 6, Dihydrofolate Reductase, and Dihydropteroate Synthase Resistance Markers in Clinical Isolates from Children Treated with an Artesunate-Sulfadoxine-Pyrimethamine Combination

Virginie Menemedengue; Khalifa Sahnouni; Leonardo K. Basco; Rachida Tahar

Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are reliable molecular markers for antifolate resistance. The P. falciparum ATPase 6 (pfatp6) gene has been proposed to be a potential marker for artemisinin resistance. In our previous clinical study, we showed that artesunate-sulfadoxine-pyrimethamine is highly effective against uncomplicated malaria in Yaoundé, Cameroon. In the present study, dhfr, dhps, and pfatp6 mutations in P. falciparum isolates obtained from children treated with artesunate-sulfadoxine-pyrimethamine were determined. All 61 isolates had wild-type Pfatp6 263, 623, and 769 alleles, and 11 (18%) had a single E431K substitution. Three additional mutations, E643Q, E432K, and E641Q, were detected. The results did not indicate any warning signal of serious concern (i.e., no parasites were seen with quintuple dhfr-dhps, DHFR Ile164Leu, or pfatp6 mutations), as confirmed by the high clinical efficacy of artesunate-sulfadoxine-pyrimethamine. Further studies are required to identify a molecular marker that reliably predicts artemisinin resistance.


Malaria Research and Treatment | 2012

Clinical Efficacy of Artemether-Lumefantrine in Congolese Children with Acute Uncomplicated Falciparum Malaria in Brazzaville

Mathieu Ndounga; Rachida Tahar; Prisca Nadine Casimiro; Dieudonné Loumouamou; Leonardo K. Basco

The Republic of the Congo adopted artemisinin-based combination therapies (ACTs) in 2006: artesunate-amodiaquine and artemether-lumefantrine as the first-line and second-line drugs, respectively. The baseline efficacy of artemether-lumefantrine was evaluated between March and July 2006 in Brazzaville, the capital city of Congo. Seventy-seven children aged between 6 months and 10 years were enrolled in a nonrandomized study. The children were treated under supervision with 6 doses of artemether-lumefantrine and followed up for 28 days in accordance with the 2003 World Health Organization guideline. Pretreatment (i.e., day 0) and recrudescent Plasmodium falciparum isolates between day 14 and day 28 were compared by the polymerase chain reaction to distinguish between true recrudescence and reinfection. The overall cure rate on day 28 was 96.9% after PCR correction. Reported adverse effects included pruritus and dizziness. Artemether-lumefantrine was highly efficacious in Brazzaville.


Malaria Journal | 2016

Plasma levels of eight different mediators and their potential as biomarkers of various clinical malaria conditions in African children

Rachida Tahar; Catarina Albergaria; Neil Zeghidour; Vincent Foumane Ngane; Leonardo K. Basco; Christian Roussilhon

BackgroundPlasmodium falciparum infection can lead to several clinical manifestations ranging from asymptomatic infections (AM) and uncomplicated malaria (UM) to potentially fatal severe malaria (SM), including cerebral malaria (CM). Factors implicated in the progression towards severe disease are not fully understood.MethodsIn the present study, an enzyme-linked immunosorbent assay (ELISA) method was used to investigate the plasma content of several biomarkers of the immune response, namely Neopterin, sCD163, suPAR, Pentraxin 3 (PTX3), sCD14, Fractalkine (CX3CL1), sTREM-1 and MIG (CXCL9), in patients with distinct clinical manifestations of malaria. The goal of this study was to determine the relative involvement of these inflammatory mediators in the pathogenesis of malaria and test their relevance as biomarkers of disease severity.ResultsROC curve analysis show that children with AM were characterized by high levels of Fractalkine and sCD163 whereas children with UM were distinguishable by the presence of PTX3 in their plasma. Furthermore, principal component analysis indicated that the combination of Fractalkine, MIG, and Neopterin was the best predictor of AM condition, while suPAR, PTX3 and sTREM-1 combination was the best indicator of UM when compared to AM. The association of Neopterin, suPAR and Fractalkine was strongly predictive of SM or CM compared to UM.ConclusionsThe results indicate that the simultaneous evaluation of these bioactive molecules as quantifiable blood parameters may be helpful to get a better insight into the clinical syndromes in children with malaria.

Collaboration


Dive into the Rachida Tahar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicaise Tuikue Ndam

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar

Philippe Deloron

Institut de recherche pour le développement

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Talleh Almelli

Paris Descartes University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascal Ringwald

World Health Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian J. F. Luty

Paris Descartes University

View shared research outputs
Researchain Logo
Decentralizing Knowledge