Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachit K. Saxena is active.

Publication


Featured researches published by Rachit K. Saxena.


Nature Biotechnology | 2013

Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement

Rajeev K. Varshney; Chi Song; Rachit K. Saxena; Sarwar Azam; Sheng Yu; Andrew G. Sharpe; Steven B. Cannon; Jong-Min Baek; Benjamin D. Rosen; Bunyamin Tar'an; Teresa Millán; Xudong Zhang; Larissa Ramsay; Aiko Iwata; Ying Wang; William C. Nelson; Andrew D. Farmer; Pooran M. Gaur; Carol Soderlund; R. Varma Penmetsa; Chunyan Xu; Arvind K. Bharti; Weiming He; Peter Winter; Shancen Zhao; James K. Hane; Noelia Carrasquilla-Garcia; Janet A. Condie; Hari D. Upadhyaya; Ming-Cheng Luo

Chickpea (Cicer arietinum) is the second most widely grown legume crop after soybean, accounting for a substantial proportion of human dietary nitrogen intake and playing a crucial role in food security in developing countries. We report the ∼738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes. Resequencing and analysis of 90 cultivated and wild genotypes from ten countries identifies targets of both breeding-associated genetic sweeps and breeding-associated balancing selection. Candidate genes for disease resistance and agronomic traits are highlighted, including traits that distinguish the two main market classes of cultivated chickpea—desi and kabuli. These data comprise a resource for chickpea improvement through molecular breeding and provide insights into both genome diversity and domestication.


Nature Biotechnology | 2012

Draft genome sequence of pigeonpea ( Cajanus cajan ), an orphan legume crop of resource-poor farmers

Rajeev K. Varshney; Weineng Chen; Yupeng Li; Arvind K. Bharti; Rachit K. Saxena; J. A. Schlueter; Mark Ta Donoghue; Sarwar Azam; G. Y. Fan; A. M. Whaley; Andrew D. Farmer; J. Sheridan; Aiko Iwata; Reetu Tuteja; R. V. Penmetsa; W. Wu; H. D. Upadhyaya; Shiaw-Pyng Yang; Trushar Shah; K. B. Saxena; T. Michael; W. R. McCombie; B. C. Yang; Gengyun Zhang; Yang H; Jun Wang; Charles Spillane; Douglas R. Cook; Gregory D. May; Xun Xu

Pigeonpea is an important legume food crop grown primarily by smallholder farmers in many semi-arid tropical regions of the world. We used the Illumina next-generation sequencing platform to generate 237.2 Gb of sequence, which along with Sanger-based bacterial artificial chromosome end sequences and a genetic map, we assembled into scaffolds representing 72.7% (605.78 Mb) of the 833.07 Mb pigeonpea genome. Genome analysis predicted 48,680 genes for pigeonpea and also showed the potential role that certain gene families, for example, drought tolerance–related genes, have played throughout the domestication of pigeonpea and the evolution of its ancestors. Although we found a few segmental duplication events, we did not observe the recent genome-wide duplication events observed in soybean. This reference genome sequence will facilitate the identification of the genetic basis of agronomically important traits, and accelerate the development of improved pigeonpea varieties that could improve food security in many developing countries.


BMC Plant Biology | 2011

Analysis of BAC-end sequences (BESs) and development of BES-SSR markers for genetic mapping and hybrid purity assessment in pigeonpea (Cajanus spp.)

Abhishek Bohra; Anuja Dubey; Rachit K. Saxena; R. Varma Penmetsa; Kn Poornima; Naresh Kumar; Andrew D. Farmer; Gudipati Srivani; Hari D. Upadhyaya; Ragini Gothalwal; S Ramesh; Dhiraj Singh; K. B. Saxena; P. B. Kavi Kishor; Nagendra K. Singh; Christopher D. Town; Gregory D. May; Douglas R. Cook; Rajeev K. Varshney

BackgroundPigeonpea [Cajanus cajan (L.) Millsp.] is an important legume crop of rainfed agriculture. Despite of concerted research efforts directed to pigeonpea improvement, stagnated productivity of pigeonpea during last several decades may be accounted to prevalence of various biotic and abiotic constraints and the situation is exacerbated by availability of inadequate genomic resources to undertake any molecular breeding programme for accelerated crop improvement. With the objective of enhancing genomic resources for pigeonpea, this study reports for the first time, large scale development of SSR markers from BAC-end sequences and their subsequent use for genetic mapping and hybridity testing in pigeonpea.ResultsA set of 88,860 BAC (bacterial artificial chromosome)-end sequences (BESs) were generated after constructing two BAC libraries by using HindIII (34,560 clones) and BamHI (34,560 clones) restriction enzymes. Clustering based on sequence identity of BESs yielded a set of >52K non-redundant sequences, comprising 35 Mbp or >4% of the pigeonpea genome. These sequences were analyzed to develop annotation lists and subdivide the BESs into genome fractions (e.g., genes, retroelements, transpons and non-annotated sequences). Parallel analysis of BESs for microsatellites or simple sequence repeats (SSRs) identified 18,149 SSRs, from which a set of 6,212 SSRs were selected for further analysis. A total of 3,072 novel SSR primer pairs were synthesized and tested for length polymorphism on a set of 22 parental genotypes of 13 mapping populations segregating for traits of interest. In total, we identified 842 polymorphic SSR markers that will have utility in pigeonpea improvement. Based on these markers, the first SSR-based genetic map comprising of 239 loci was developed for this previously uncharacterized genome. Utility of developed SSR markers was also demonstrated by identifying a set of 42 markers each for two hybrids (ICPH 2671 and ICPH 2438) for genetic purity assessment in commercial hybrid breeding programme.ConclusionIn summary, while BAC libraries and BESs should be useful for genomics studies, BES-SSR markers, and the genetic map should be very useful for linking the genetic map with a future physical map as well as for molecular breeding in pigeonpea.


Critical Reviews in Plant Sciences | 2015

Legume Crops Phylogeny and Genetic Diversity for Science and Breeding

Petr Smýkal; Clarice J. Coyne; Mike J. Ambrose; N. Maxted; Hanno Schaefer; Matthew W. Blair; Jens Berger; Stephanie L. Greene; Matthew N. Nelson; Naghmeh Besharat; Tomáš Vymyslický; Cengiz Toker; Rachit K. Saxena; Manish Roorkiwal; Manish K. Pandey; Jinguo Hu; Ying H. Li; Li X. Wang; Yong Guo; Li J. Qiu; Robert Redden; Rajeev K. Varshney

Economically, legumes (Fabaceae) represent the second most important family of crop plants after the grass family, Poaceae. Grain legumes account for 27% of world crop production and provide 33% of the dietary protein consumed by humans, while pasture and forage legumes provide vital part of animal feed. Fabaceae, the third largest family of flowering plants, has traditionally been divided into the following three subfamilies: Caesalpinioideae, Mimosoideae, and Papilionoideae, all together with 800 genera and 20,000 species. The latter subfamily contains most of the major cultivated food and feed crops. Among the grain legumes are some of mankinds earliest crop plants, whose domestication parallelled that of cereals: Soybean in China; faba bean, lentil, chickpea and pea in the Fertile Crescent of the Near East; cowpeas and bambara groundnut in Africa; soybean and mungbeans in East Asia; pigeonpea and the grams in South Asia; and common bean, lima bean, scarlet runner bean, tepary bean and lupin in Central and South America. The importance of legumes is evidenced by their high representation in ex situ germplasm collections, with more than 1,000,000 accessions worldwide. A detailed knowledge of the phylogenetic relationships of the Fabaceae is essential for understanding the origin and diversification of this economically and ecologically important family of angiosperms. This review aims to combine the phylogenetic and genetic diversity approaches to better illustrate the origin, domestication history and preserved germplasm of major legume crops from 13 genera of six tribes and to indicate further potential both for science and agriculture.


Briefings in Functional Genomics | 2014

Structural variations in plant genomes

Rachit K. Saxena; David Edwards; Rajeev K. Varshney

Differences between plant genomes range from single nucleotide polymorphisms to large-scale duplications, deletions and rearrangements. The large polymorphisms are termed structural variants (SVs). SVs have received significant attention in human genetics and were found to be responsible for various chronic diseases. However, little effort has been directed towards understanding the role of SVs in plants. Many recent advances in plant genetics have resulted from improvements in high-resolution technologies for measuring SVs, including microarray-based techniques, and more recently, high-throughput DNA sequencing. In this review we describe recent reports of SV in plants and describe the genomic technologies currently used to measure these SVs.


DNA Research | 2012

Large-Scale Development of Cost-Effective Single-Nucleotide Polymorphism Marker Assays for Genetic Mapping in Pigeonpea and Comparative Mapping in Legumes

Rachit K. Saxena; R. Varma Penmetsa; Hari D. Upadhyaya; Ashish Kumar; Noelia Carrasquilla-Garcia; Jessica A. Schlueter; Andrew D. Farmer; Adam M. Whaley; Birinchi K. Sarma; Gregory D. May; Douglas R. Cook; Rajeev K. Varshney

Single-nucleotide polymorphisms (SNPs, >2000) were discovered by using RNA-seq and allele-specific sequencing approaches in pigeonpea (Cajanus cajan). For making the SNP genotyping cost-effective, successful competitive allele-specific polymerase chain reaction (KASPar) assays were developed for 1616 SNPs and referred to as PKAMs (pigeonpea KASPar assay markers). Screening of PKAMs on 24 genotypes [23 from cultivated species and 1 wild species (Cajanus scarabaeoides)] defined a set of 1154 polymorphic markers (77.4%) with a polymorphism information content (PIC) value from 0.04 to 0.38. One thousand and ninety-four PKAMs showed polymorphisms between parental lines of the reference mapping population (C. cajan ICP 28 × C. scarabaeoides ICPW 94). By using high-quality marker genotyping data on 167 F2 lines from the population, a comprehensive genetic map comprising 875 PKAMs with an average inter-marker distance of 1.11 cM was developed. Previously mapped 35 simple sequence repeat markers were integrated into the PKAM map and an integrated genetic map of 996.21 cM was constructed. Mapped PKAMs showed a higher degree of synteny with the genome of Glycine max followed by Medicago truncatula and Lotus japonicus and least with Vigna unguiculata. These PKAMs will be useful for genetics research and breeding applications in pigeonpea and for utilizing genome information from other legume species.


Journal of Biosciences | 2012

Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies.

Rajeev K. Varshney; Himabindu Kudapa; Manish Roorkiwal; Mahendar Thudi; Manish K. Pandey; Rachit K. Saxena; Siva K. Chamarthi; Murali Mohan S; Nalini Mallikarjuna; Hari D. Upadhyaya; Pooran M. Gaur; L. Krishnamurthy; K. B. Saxena; S. N. Nigam; S. Pande

Molecular markers are the most powerful genomic tools to increase the efficiency and precision of breeding practices for crop improvement. Progress in the development of genomic resources in the leading legume crops of the semi-arid tropics (SAT), namely, chickpea (Cicer arietinum), pigeonpea (Cajanus cajan) and groundnut (Arachis hypogaea), as compared to other crop species like cereals, has been very slow. With the advances in next-generation sequencing (NGS) and high-throughput (HTP) genotyping methods, there is a shift in development of genomic resources including molecular markers in these crops. For instance, 2,000 to 3,000 novel simple sequence repeats (SSR) markers have been developed each for chickpea, pigeonpea and groundnut. Based on Sanger, 454/FLX and Illumina transcript reads, transcriptome assemblies have been developed for chickpea (44,845 transcript assembly contigs, or TACs) and pigeonpea (21,434 TACs). Illumina sequencing of some parental genotypes of mapping populations has resulted in the development of 120 million reads for chickpea and 128.9 million reads for pigeonpea. Alignment of these Illumina reads with respective transcriptome assemblies have provided >10,000 SNPs each in chickpea and pigeonpea. A variety of SNP genotyping platforms including GoldenGate, VeraCode and Competitive Allele Specific PCR (KASPar) assays have been developed in chickpea and pigeonpea. By using above resources, the first-generation or comprehensive genetic maps have been developed in the three legume species mentioned above. Analysis of phenotyping data together with genotyping data has provided candidate markers for drought-tolerance-related root traits in chickpea, resistance to foliar diseases in groundnut and sterility mosaic disease (SMD) and fertility restoration in pigeonpea. Together with these trait-associated markers along with those already available, molecular breeding programmes have been initiated for enhancing drought tolerance, resistance to fusarium wilt and ascochyta blight in chickpea and resistance to foliar diseases in groundnut. These trait-associated robust markers along with other genomic resources including genetic maps and genomic resources will certainly accelerate crop improvement programmes in the SAT legumes.


Molecular Breeding | 2010

Application of SSR markers for molecular characterization of hybrid parents and purity assessment of ICPH 2438 hybrid of pigeonpea [Cajanus cajan (L.) Millspaugh]

Rachit K. Saxena; K. B. Saxena; Rajeev K. Varshney

With an objective of achieving a breakthrough in the productivity of pigeonpea, a hybrid breeding technology based on elements of the cytoplasmic-nuclear male-sterility (CMS) system and partial natural out-crossing has recently been developed. However, there is no molecular diversity information available on parental lines of hybrids being generated at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT). This study deals with the use of 148 simple sequence repeat (SSR) markers, including 32 novel markers reported here for the first time, on 159 A (cytoplasmic male sterile), B (maintainer) and R (fertility restorer) lines. In total, 41 (27.7%) markers showed polymorphism with 2 to 6 (average 2.6) alleles and 0.01 to 0.81 (average 0.34) polymorphism information content (PIC) value. Of these polymorphic markers, 22 SSR markers showed polymorphism between A (ICPA 2039) and R (ICPR 2438) lines of the commercial hybrid (ICPH 2438); however, only 21 of these SSR markers showed the same profile between A (ICPA 2039) and B (ICPB 2039) lines. Finally, two SSR markers, CCB4 and CCttc006, were found most suitable for purity assessment of hybrid seeds of the ICPH 2438 hybrid. The utility of these two diagnostic SSR markers has been demonstrated by using seed lots of this hybrid from two sources, ICRISAT and Mahabeej. It is anticipated that molecular diversity information generated on parental lines of hybrids under development, and identification of the two most suitable markers for testing the purity of hybrid seeds of ICPH 2438, will facilitate the pigeonpea hybrid breeding programme.


The Plant Genome | 2013

Single Nucleotide Polymorphism Genotyping for Breeding and Genetics Applications in Chickpea and Pigeonpea using the BeadXpress Platform

Manish Roorkiwal; Shrikant L. Sawargaonkar; Annapurna Chitikineni; Mahendar Thudi; Rachit K. Saxena; Hari D. Upadhyaya; M. Isabel Vales; Oscar Riera-Lizarazu; Rajeev K. Varshney

Single nucleotide polymorphisms (SNPs) are ideal molecular markers due to their higher abundance. Although several types of genotyping platforms for assaying large number of SNPs are available, in cases such as marker‐assisted selection, where few markers are required for genotyping a set of potential lines, high‐throughput SNP genotyping platforms (e.g., iScan or Infinium) may not be cost effective. In this scenario, GoldenGate assays based on VeraCode technology using Illumina BeadXpress seems to be the most cost‐effective platform. The objective of this study was to develop cost‐effective SNP genotyping platforms in chickpea (Cicer arietinum L.) and pigeonpea (Cajanus cajan L.). Two sets of SNPs, one each for chickpea (96 SNPs) and pigeonpea (48 SNPs), were developed and tested by genotyping 288 diverse genotypes from respective reference sets. The SNPs selected for the oligo pool assays had high transferability to crop wild relative species. The mean polymorphism information content value of assayed SNP markers was 0.31 and 0.32 in chickpea and pigeonpea, respectively. No unique pattern was observed in the chickpea reference set whereas two major groups were observed in the case of the pigeonpea reference set. The Illumina BeadXpress platform assays developed for chickpea and pigeonpea are highly informative and cost effective for undertaking genetic studies in these legume species.


Plant Biotechnology Journal | 2014

A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies

Pradeep Ruperao; Chon-Kit Kenneth Chan; Sarwar Azam; Miroslava Karafiátová; Satomi Hayashi; Jana Čížková; Rachit K. Saxena; Hana Šimková; Chi Song; Jan Vrána; Annapurna Chitikineni; Paul Visendi; Pooran M. Gaur; Teresa Millán; Karam B. Singh; Bunyamin Tar'an; Jun Wang; Jacqueline Batley; Jaroslav Doležel; Rajeev K. Varshney; David Edwards

With the expansion of next-generation sequencing technology and advanced bioinformatics, there has been a rapid growth of genome sequencing projects. However, while this technology enables the rapid and cost-effective assembly of draft genomes, the quality of these assemblies usually falls short of gold standard genome assemblies produced using the more traditional BAC by BAC and Sanger sequencing approaches. Assembly validation is often performed by the physical anchoring of genetically mapped markers, but this is prone to errors and the resolution is usually low, especially towards centromeric regions where recombination is limited. New approaches are required to validate reference genome assemblies. The ability to isolate individual chromosomes combined with next-generation sequencing permits the validation of genome assemblies at the chromosome level. We demonstrate this approach by the assessment of the recently published chickpea kabuli and desi genomes. While previous genetic analysis suggests that these genomes should be very similar, a comparison of their chromosome sizes and published assemblies highlights significant differences. Our chromosomal genomics analysis highlights short defined regions that appear to have been misassembled in the kabuli genome and identifies large-scale misassembly in the draft desi genome. The integration of chromosomal genomics tools within genome sequencing projects has the potential to significantly improve the construction and validation of genome assemblies. The approach could be applied both for new genome assemblies as well as published assemblies, and complements currently applied genome assembly strategies.

Collaboration


Dive into the Rachit K. Saxena's collaboration.

Top Co-Authors

Avatar

Rajeev K. Varshney

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

K. B. Saxena

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Vikas K. Singh

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Abhishek Bohra

Indian Institute of Pulses Research

View shared research outputs
Top Co-Authors

Avatar

C. V. Sameer Kumar

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aamir W. Khan

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Abhishek Rathore

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Pallavi Sinha

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Sarwar Azam

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Researchain Logo
Decentralizing Knowledge