Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rad Sadri is active.

Publication


Featured researches published by Rad Sadri.


Applied Mathematics and Computation | 2014

Numerical simulation of laminar to turbulent nanofluid flow and heat transfer over a backward-facing step

Hussein Togun; Mohammad Reza Safaei; Rad Sadri; S.N. Kazi; A. Badarudin; Kamel Hooman; Emad Sadeghinezhad

This paper presents a numerical study of heat transfer to turbulent and laminar Cu/water flow over a backward-facing step. Mathematical model based on finite volume method with a FORTRAN code is used to solve the continuity, momentum, energy and turbulence equations. Turbulence was modeled by the shear stress transport (SST) K-ω Model. In this simulation, three volume fractions of nanofluid (0%, 2% and 4%), a varying Reynolds number from 50 to 200 for the laminar range and 5000 to 20,000 for the turbulent range, an expansion ratio of 2 and constant heat flux of 4000 W/m2 were considered. The results show the effect of nanofluid volume fraction on enhancing the Nusselt number in the laminar and turbulent ranges. The effect of expansion ratio was clearly observed at the downstream inlet region where the peak of the Nusselt number profile was referred to as enhanced heat transfer due to the generated recirculation flow. An increase of pressure drop was evident with an increasing Reynolds number and decreasing nanofluid volume fraction, while the maximum pressure drop was detected in the downstream inlet region. A rising Reynolds number caused an increasing Nusselt number, and the highest heat transfer augmentation in the present investigation was about 26% and 36% for turbulent and laminar range, respectively compared with pure water.


Entropy | 2013

Numerical Study of Entropy Generation in a Flowing Nanofluid Used in Micro- and Minichannels

Mohammadreza Hassan; Rad Sadri; Goodarz Ahmadi; Mahidzal Dahari; S.N. Kazi; Mohammad Reza Safaei; Emad Sadeghinezhad

This article mainly concerns theoretical research on entropy generation influences due to heat transfer and flow in nanofluid suspensions. A conventional nanofluid of alumina-water (Al2O3-H2O) was considered as the fluid model. Due to the sensitivity of entropy to duct diameter, mini- and microchannels with diameters of 3 mm and 0.05 mm were considered, and a laminar flow regime was assumed. The conductivity and viscosity of two different nanofluid models were examined with the help of theoretical and experimentally determined parameter values. It was shown that order of the magnitude analysis can be used for estimating entropy generation characteristics of nanofluids in mini- and microchannels. It was found that using highly viscous alumina-water nanofluid under laminar flow regime in microchannels was not desirable. Thus, there is a need for the development of low viscosity alumina-water (Al2O3-H2O) nanofluids for use in microchannels under laminar flow condition. On the other hand, Al2O3-H2O nanofluid was a superior coolant under laminar flow regime in minichannels. The presented results also indicate that flow friction and thermal irreversibility are, respectively, more significant at lower and higher tube diameters.


RSC Advances | 2015

Synthesis of polyethylene glycol-functionalized multi-walled carbon nanotubes with a microwave-assisted approach for improved heat dissipation

Ahmad Amiri; Rad Sadri; Goodarz Ahmadi; B.T. Chew; S.N. Kazi; Mehdi Shanbedi; Maryam Sadat Alehashem

In order to improve the dispersibility of multi-walled carbon nanotubes (MWCNT) in aqueous media, MWCNT were functionalized with tetrahydrofurfuryl polyethylene glycol (TFPEG) in a one-pot, fast and environmentally friendly method. To reduce defects and eliminate the acid-treatment stage, an electrophonic addition reaction under microwave irradiation was employed. Surface functionalization was analyzed by FTIR, Raman spectroscopy, thermogravimetric analysis (TGA). In addition, the morphology of TFPEG-treated MWCNT (PMWCNT) was investigated by transmission electron microscopy (TEM). After the functionalization phase, the convective heat transfer coefficient and pressure drop in PMWCNT-based water nanofluids with various weight concentrations were analyzed and compared with that of the base fluid. The results suggest that the addition of PMWCNT into the water improved the convective heat transfer coefficient significantly. The pressure drop of prepared PMWCNT-based water nanofluids showed an insignificant variation as compared with the base fluid and could result from good dispersivity of PMWCNT. According to the laminar flow results, as the weight concentration and Reynolds number increase, the convective heat transfer coefficient and pressure drop increase.


Journal of Dispersion Science and Technology | 2017

Experimental study on thermo-physical and rheological properties of stable and green reduced graphene oxide nanofluids: Hydrothermal assisted technique

Rad Sadri; K. Zangeneh Kamali; Maryam Hosseini; Nashrul Zubir; S.N. Kazi; Goodarz Ahmadi; Mahidzal Dahari; Nay Ming Huang; Amir Moradi Golsheikh

ABSTRACT In this study a dehydration hydrothermal technique has been used to introduce a simple, environmentally friendly and facile method for manufacturing highly dispersed reduced graphene oxide for improving the thermo-physical and rheological properties of heat transfer liquids. The hydrothermal reduction of graphene oxide was verified by various characterizations methods such as UV–visible absorption spectroscopy, Zeta potential, Raman spectroscopy, X-ray photoemission spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. A thorough investigation was conducted on the thermo-physical properties of reduced graphene oxide at concentrations of 0.02, 0.04, 0.06, and 0.08 wt% under different temperatures. Significant improvements in electrical and thermal conductivity were obtained by adding a small amount of hydrothermal-assisted reduced graphene oxide (h-rGO) in the suspension. The viscosity and density remained relatively unchanged with the increase of concentrations where the pH was maintained within the desirable value, despite the fact that no additive was used during the reduction process. It is noteworthy to highlight that the h-rGO aqueous suspensions have shown Newtonian behavior. Results indicated that the h-rGO could be employed as a promising additive for conventional heat transfer liquids for different thermal applications. GRAPHICAL ABSTRACT


Journal of Colloid and Interface Science | 2015

Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system

Mohd Nashrul Mohd Zubir; A. Badarudin; S.N. Kazi; Misni Misran; Ahmad Amiri; Rad Sadri; Solangi Khalid

The present work highlighted on the implementation of a unique concept for stabilizing colloids at their incipiently low charge potential. A highly charged nanoparticle was introduced within a coagulated prone colloidal system, serving as stabilizer to resist otherwise rapid flocculation and sedimentation process. A low size asymmetry of nanoparticle/colloid serves as the new topic of investigation in addition to the well-established large size ratio nanoparticle/microparticle study. Highly charged Al2O3 nanoparticles were used within the present research context to stabilize TiO2 and Fe3O4 based colloids via the formation of composite structures. It was believed, based on the experimental evidence, that Al2O3 nanoparticle interact with the weakly charged TiO2 and Fe3O4 colloids within the binary system via absorption and/or haloing modes to increase the overall charge potential of the respective colloids, thus preventing further surface contact via van der Waals attraction. Series of experimental results strongly suggest the presence of weakly charged colloids in the studied bimodal system where, in the absence of highly charged nanoparticle, experience rapid instability. Absorbance measurement indicated that the colloidal stability drops in accordance to the highly charged nanoparticle sedimentation rate, suggesting the dominant influence of nanoparticles to attain a well-dispersed binary system. Further, it was found that the level of colloidal stability was enhanced with increasing nanoparticle fraction within the mixture. Rheological observation revealed that each hybrid complexes demonstrated behavior reminiscence to water with negligible increase in viscosity which serves as highly favorable condition particularly in thermal transport applications.


Critical Reviews in Food Science and Nutrition | 2015

A Comprehensive Review of Milk Fouling on Heated Surfaces

Emad Sadeghinezhad; S.N. Kazi; Mahidzal Dahari; Mohammad Reza Safaei; Rad Sadri; A. Badarudin

Heat exchanger performance degrades rapidly during operation due to formation of deposits on heat transfer surfaces which ultimately reduces service life of the equipment. Due to scaling, product deteriorates which causes lack of proper heating. Chemistry of milk scaling is qualitatively understood and the mathematical models for fouling at low temperatures have been produced but the behavior of systems at ultra high temperature processing has to be studied further to understand in depth. In diversified field, the effect of whey protein fouling along with pressure drop in heat exchangers were conducted by many researchers. Adding additives, treatment of heat exchanger surfaces and changing of heat exchanger configurations are notable areas of investigation in milk fouling. The present review highlighted information about previous work on fouling, influencing parameters of fouling and its mitigation approach and ends up with recommendations for retardation of milk fouling and necessary measures to perform the task.


Journal of Dispersion Science and Technology | 2016

Investigation on the Use of Graphene Oxide as Novel Surfactant for Stabilizing Carbon Based Materials

Mohd Nashrul Mohd Zubir; A. Badarudin; S.N. Kazi; Huang Nay Ming; Rad Sadri; Ahmad Amiri

The present work reported on the use of graphene oxide (GO) as effective dispersant to isolate different carbon allotropes. The nature of its chemical structure which consists of hydrophobic and hydrophilic components enables GO to behave as surfactant, paving routes for dissolution of graphitic materials and achieving surfactant free all-carbon solutions. Two additional carboneous materials under the family of fullerene (carbon nanofiber—CNF) and graphite (graphene nanoplatelets—GnP) were introduced within the present study to form a new GO based hybrid complexes on top of the commonly investigated carbon nanotube (CNT) based GO hybrid. Investigation on GO stability with respect to particle size and zeta potential measurements showed that the strength of its dispersibility was highly dependent on its morphological size and less affected by the pH. Rheological study revealed that GO shear–strain relationship is highly sensitive to the particle size. The GO viscosity experienced dramatic changes from Newtonian toward shear thinning behaviors as the particle size increases. Thermal conductivity measurement highlighted as high as 8% increase in magnitude with the addition of CNT, CNF, and GnP carbon constituents, indicating that the enhancement may be attributed to the much efficient thermal transport along the conducting path of pristine carbon allotropes. GRAPHICAL ABSTRACT


Journal of Colloid and Interface Science | 2017

A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids

Rad Sadri; Maryam Hosseini; S.N. Kazi; Samira Bagheri; Nashrul Zubir; K.H. Solangi; Tuan Zaharinie; A. Badarudin

In this study, we propose an innovative, bio-based, environmentally friendly approach for the covalent functionalization of multi-walled carbon nanotubes using clove buds. This approach is innovative because we do not use toxic and hazardous acids which are typically used in common carbon nanomaterial functionalization procedures. The MWCNTs are functionalized in one pot using a free radical grafting reaction. The clove-functionalized MWCNTs (CMWCNTs) are then dispersed in distilled water (DI water), producing a highly stable CMWCNT aqueous suspension. The CMWCNTs are characterized using Raman spectroscopy, X-ray photoelectron spectroscopy and transmission electron microscopy. The electrostatic interactions between the CMWCNT colloidal particles in DI water are verified via zeta potential measurements. UV-vis spectroscopy is also used to examine the stability of the CMWCNTs in the base fluid. The thermo-physical properties of the CMWCNT nano-fluids are examined experimentally and indeed, this nano-fluid shows remarkably improved thermo-physical properties, indicating its superb potential for various thermal applications.


Journal of Colloid and Interface Science | 2018

A facile, bio-based, novel approach for synthesis of covalently functionalized graphene nanoplatelet nano-coolants toward improved thermo-physical and heat transfer properties

Rad Sadri; Maryam Hosseini; S.N. Kazi; Samira Bagheri; Ali H. Abdelrazek; Goodarz Ahmadi; Nashrul Zubir; Roslina Ahmad; Nor Ishida Zainal Abidin

In this study, we synthesized covalently functionalized graphene nanoplatelet (GNP) aqueous suspensions that are highly stable and environmentally friendly for use as coolants in heat transfer systems. We evaluated the heat transfer and hydrodynamic properties of these nano-coolants flowing through a horizontal stainless steel tube subjected to a uniform heat flux at its outer surface. The GNPs functionalized with clove buds using the one-pot technique. We characterized the clove-treated GNPs (CGNPs) using X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). We then dispersed the CGNPs in distilled water at three particle concentrations (0.025, 0.075 and 0.1wt%) in order to prepare the CGNP-water nanofluids (nano-coolants). We used ultraviolet-visible (UV-vis) spectroscopy to examine the stability and solubility of the CGNPs in the distilled water. There is significant enhancement in thermo-physical properties of CGNPs nanofluids relative those for distilled water. We validated our experimental set-up by comparing the friction factor and Nusselt number for distilled water obtained from experiments with those determined from empirical correlations, indeed, our experimental set-up is reliable and produces results with reasonable accuracy. We conducted heat transfer experiments for the CGNP-water nano-coolants flowing through the horizontal heated tube in fully developed turbulent condition. Our results are indeed promising since there is a significant enhancement in the Nusselt number and convective heat transfer coefficient for the CGNP-water nanofluids, with only a negligible increase in the friction factor and pumping power. More importantly, we found that there is a significant increase in the performance index, which is a positive indicator that our nanofluids have potential to substitute conventional coolants in heat transfer systems because of their overall thermal performance and energy savings benefits.


Energy | 2015

A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids

K.H. Solangi; S.N. Kazi; M.R. Luhur; A. Badarudin; Ahmad Amiri; Rad Sadri; Mohd Nashrul Mohd Zubir; Samira Gharehkhani; K.H. Teng

Collaboration


Dive into the Rad Sadri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge