Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Radha Bonala is active.

Publication


Featured researches published by Radha Bonala.


Nucleic Acids Research | 2012

Lack of recognition by global-genome nucleotide excision repair accounts for the high mutagenicity and persistence of aristolactam-DNA adducts

Victoria Sidorenko; Jung-Eun Yeo; Radha Bonala; Francis Johnson; Orlando D. Schärer; Arthur P. Grollman

Exposure to aristolochic acid (AA), a component of Aristolochia plants used in herbal remedies, is associated with chronic kidney disease and urothelial carcinomas of the upper urinary tract. Following metabolic activation, AA reacts with dA and dG residues in DNA to form aristolactam (AL)-DNA adducts. These mutagenic lesions generate a unique TP53 mutation spectrum, dominated by A : T to T : A transversions with mutations at dA residues located almost exclusively on the non-transcribed strand. We determined the level of AL-dA adducts in human fibroblasts treated with AA to determine if this marked strand bias could be accounted for by selective resistance to global-genome nucleotide excision repair (GG-NER). AL-dA adduct levels were elevated in cells deficient in GG-NER and transcription-coupled NER, but not in XPC cell lines lacking GG-NER only. In vitro, plasmids containing a single AL-dA adduct were resistant to the early recognition and incision steps of NER. Additionally, the NER damage sensor, XPC-RAD23B, failed to specifically bind to AL-DNA adducts. However, placing AL-dA in mismatched sequences promotes XPC-RAD23B binding and renders this adduct susceptible to NER, suggesting that specific structural features of this adduct prevent processing by NER. We conclude that AL-dA adducts are not recognized by GG-NER, explaining their high mutagenicity and persistence in target tissues.


Drug Metabolism and Disposition | 2006

QUANTITATIVE DETERMINATION OF ARISTOLOCHIC ACID-DERIVED DNA ADDUCTS IN RATS USING 32P-POSTLABELING/POLYACRYLAMIDE GEL ELECTROPHORESIS ANALYSIS

Huan Dong; Naomi Suzuki; Maria Cecilia Torres; Radha Bonala; Francis Johnson; Arthur P. Grollman; Shinya Shibutani

Aristolochic acids (AA) are nephrotoxic and carcinogenic nitroaromatic compounds produced by the Aristolochiaceae family of plants. Ingestion of these phytotoxins by humans results in a syndrome known as AA nephropathy, characterized by renal tubulointerstitial fibrosis and upper urothelial cancer. After activation by cellular enzymes, AA I and II react with DNA to form covalent adducts and as such represent potential biomarkers for studies of AA toxicity. Using site-specifically modified oligodeoxynucleotides as standards, we have developed a method for quantifying 7-(deoxyadenosin-N6-yl) aristolactam-DNA or 7-(deoxyguanosin-N2-yl) aristolactam-DNA adducts in tissues of Wistar rats using an assay in which 32P-postlabeling techniques are coupled with nondenaturing polyacrylamide gel electrophoresis. The limit of detection with this technique is five adducts in 109 nucleotides for a 5-μg DNA sample. In contrast to previous reports, we find that the levels of AA adducts in renal tissues of Wistar rats treated p.o. with AA for 1 week with 5 mg/kg/day of AA I or AA II were much higher than that in the forestomach. Highest adduct levels were observed in rats treated with AA II, suggesting that this compound may be more genotoxic than AA I. Treatment of rats with aristolactam I, an end-product of AA I metabolism, resulted in a much lower level of adduction. This study establishes the feasibility of using AA-DNA adducts as intermediate biomarkers of exposure in studies of AA nephropathy and its associated urothelial cancer.


Chemical Research in Toxicology | 2012

Biomonitoring of Aristolactam-DNA Adducts in Human Tissues Using Ultra-Performance Liquid Chromatography/Ion-Trap Mass Spectrometry

Byeong Hwa Yun; Thomas A. Rosenquist; Viktoriya S. Sidorenko; Charles R. Iden; Chung-Hsin Chen; Yeong-Shiau Pu; Radha Bonala; Francis Johnson; Kathleen G. Dickman; Arthur P. Grollman; Robert J. Turesky

Aristolochic acids (AAs) are a structurally related family of nephrotoxic and carcinogenic nitrophenanthrene compounds found in Aristolochia herbaceous plants, many of which have been used worldwide for medicinal purposes. AAs have been implicated in the etiology of so-called Chinese herbs nephropathy and of Balkan endemic nephropathy. Both of these disease syndromes are associated with carcinomas of the upper urinary tract (UUC). 8-Methoxy-6-nitrophenanthro-[3,4-d]-1,3-dioxolo-5-carboxylic acid (AA-I) is a principal component of Aristolochia herbs. Following metabolic activation, AA-I reacts with DNA to form aristolactam (AL-I)-DNA adducts. We have developed a sensitive analytical method, using ultraperformance liquid chromatography-electrospray ionization/multistage mass spectrometry (UPLC-ESI/MS(n)) with a linear quadrupole ion-trap mass spectrometer, to measure 7-(deoxyadenosin-N(6)-yl) aristolactam I (dA-AL-I) and 7-(deoxyguanosin-N(2)-yl) aristolactam I (dG-AL-I) adducts. Using 10 μg of DNA for measurements, the lower limits of quantitation of dA-AL-I and dG-AL-I are, respectively, 0.3 and 1.0 adducts per 10(8) DNA bases. We have used UPLC-ESI/MS(n) to quantify AL-DNA adducts in tissues of rodents exposed to AA and in the renal cortex of patients with UUC who reside in Taiwan, where the incidence of this uncommon cancer is the highest reported for any country in the world. In human tissues, dA-AL-I was detected at levels ranging from 9 to 338 adducts per 10(8) DNA bases, whereas dG-AL-I was not found. We conclude that UPLC-ESI/MS(n) is a highly sensitive, specific and robust analytical method, positioned to supplant (32)P-postlabeling techniques currently used for biomonitoring of DNA adducts in human tissues. Importantly, UPLC-ESI/MS(n) could be used to document exposure to AA, the toxicant responsible for AA nephropathy and its associated UUC.


Nucleic Acids Research | 2010

DNA adducts of aristolochic acid II: total synthesis and site-specific mutagenesis studies in mammalian cells

Sivaprasad Attaluri; Radha Bonala; In-Young Yang; Mark Lukin; Yujing Wen; Arthur P. Grollman; Masaaki Moriya; Charles R. Iden; Francis Johnson

Aristolochic acids I and II (AA-I, AA-II) are found in all Aristolochia species. Ingestion of these acids either in the form of herbal remedies or as contaminated wheat flour causes a dose-dependent chronic kidney failure characterized by renal tubulointerstitial fibrosis. In ∼50% of these cases, the condition is accompanied by an upper urinary tract malignancy. The disease is now termed aristolochic acid nephropathy (AAN). AA-I is largely responsible for the nephrotoxicity while both AA-I and AA-II are genotoxic. DNA adducts derived from AA-I and AA-II have been isolated from renal tissues of patients suffering from AAN. We describe the total synthesis, de novo, of the dA and dG adducts derived from AA-II, their incorporation site-specifically into DNA oligomers and the splicing of these modified oligomers into a plasmid construct followed by transfection into mouse embryonic fibroblasts. Analysis of the plasmid progeny revealed that both adducts blocked replication but were still partly processed by DNA polymerase(s). Although the majority of coding events involved insertion of correct nucleotides, substantial misincorporation of bases also was noted. The dA adduct is significantly more mutagenic than the dG adduct; both adducts give rise, almost exclusively, to misincorporation of dA, which leads to AL-II-dA→T and AL-II-dG→T transversions.


International Journal of Cancer | 2009

Detoxification of aristolochic acid I by O-demethylation: less nephrotoxicity and genotoxicity of aristolochic acid Ia in rodents.

Shinya Shibutani; Radha Bonala; Thomas A. Rosenquist; Robert A. Rieger; Naomi Suzuki; Francis Johnson; Frederick Miller; Arthur P. Grollman

Ingestion of aristolochic acids (AA) contained in herbal remedies results in aristolochic acid nephropathy (AAN), which is characterized by chronic renal failure, tubulointerstitial fibrosis and urothelial cancer. AA I and AA II, primary components in AA, have similar genotoxic potential, whereas only AA I shows severe renal toxicity in rodents. AA I is demethylated to form 8‐hydroxy‐aristolochic acid I (AA Ia) as a major metabolite. However, the nephrotoxicity and genotoxicity of AA Ia has not yet been determined. AA Ia was isolated from urine collected from rats treated with AA I and characterized by NMR and mass spectrometry. The purified AA Ia was administered intraperitoneally to C3H/He male mice for 9 days and its toxicity was compared with AA I. Using 32P‐postlabeling/polyacrylamide gel electrophoresis, the level of AA Ia‐derived DNA adducts in renal cortex was ∼70–110 times lower than that observed with AA I, indicating that AA Ia has only a limited genotoxicity. Supporting this result, when calf thymus DNA was reacted with AA Ia in a buffer containing zinc dust, the formation of AA Ia‐DNA adducts was two‐orders of magnitude lower than that of AA I. Histopathologic analysis revealed that unlike AA I, no significant changes were detected in the renal cortex of mice treated with AA Ia. Therefore, the contribution of AA Ia to renal toxicity is minimum. We conclude the metabolic pathway of converting AA I to AA Ia functions as the detoxification of AA I.


Journal of Pharmacology and Experimental Therapeutics | 2011

Physiological and Molecular Characterization of Aristolochic Acid Transport by the Kidney

Kathleen G. Dickman; Douglas H. Sweet; Radha Bonala; Tapan Ray; Amy Wu

Consumption of herbal medicines derived from Aristolochia plants is associated with a progressive tubulointerstitial disease known as aristolochic acid (AA) nephropathy. The nephrotoxin produced naturally by these plants is AA-I, a nitrophenanthrene carboxylic acid that selectively targets the proximal tubule. This nephron segment is prone to toxic injury because of its role in secretory elimination of drugs and other xenobiotics. Here, we characterize the handling of AA-I by membrane transporters involved in renal organic anion transport. Uptake assays in heterologous expression systems identified murine organic anion transporters (mOat1, mOat2, and mOat3) as capable of mediating transport of AA-I. Kinetic analyses showed that all three transporters have an affinity for AA-I in the submicromolar range and thus are likely to operate at toxicologically relevant concentrations in vivo. Structure-activity relationships revealed that the carboxyl group is critical for high-affinity interaction of AA-I with mOat1, mOat2, and mOat3, whereas the nitro group is required only by mOat1. Furthermore, the 8-methoxy group, although essential for toxicity, was not requisite for transport. Mouse renal cortical slices avidly accumulated AA-I, achieving slice-to-medium concentration ratios >10. Uptake by slices was sensitive to known mOat1 and mOat3 substrates and the organic anion transport inhibitor probenecid, which also blocked the production of DNA adducts formed with reactive intracellular metabolites of AA-I. Taken together, these findings indicate that OAT family members mediate high-affinity transport of AA-I and may be involved in the site-selective toxicity and renal elimination of this nephrotoxin.


Apoptosis | 2011

Glutamate dehydrogenase requirement for apoptosis induced by aristolochic acid in renal tubular epithelial cells

Victor Romanov; Terry Whyard; Radha Bonala; Francis Johnson; Arthur P. Grollman

Ingestion of aristolochic acids (AA) contained in herbal remedies results in a renal disease and, frequently, urothelial malignancy. The genotoxicity of AA in renal cells, including mutagenic DNA adduct formation, is well-documented. However, the mechanisms of AA-induced tubular atrophy and renal fibrosis are largely unknown. Epithelial cell death is a critical characteristic of these pathological conditions. To elucidate the mechanisms of AA-induced cytotoxicity, we explored AA-interacting proteins in tubular epithelial cells (TEC). We found that AA interacts with a mitochondrial enzyme glutamate dehydrogenase (GDH) and moderately inhibits its activity. We report that AA induces cell death in GDH-knockdown TEC preferentially via non-apoptotic means, whereas in GDH-positive cells, death was executed by both the non-apoptotic and apoptotic mechanisms. Apoptosis is an energy-reliant process and demands higher adenosine 5′-triphosphate (ATP) consumption than does the non-apoptotic cell death. We found that, after AAI treatment, the ATP depletion is more pronounced in GDH-knockdown cells. When we reduced ATP in TEC cells by inhibition of glycolysis and mitochondrial respiration, cell death mode switched from apoptosis and necrosis to necrosis only. In addition, in cells incubated at low glucose and no glutamine conditions, oxaloacetate and pyruvate reduced AAI-induced apoptosis our data suggest that AAI-GDH interactions in TEC are critical for the induction of apoptosis by direct inhibition of GDH activity. AA binding may also induce changes in GDH conformation and promote interactions with other molecules or impair signaling by GDH metabolic products, leading to apoptosis.


Tetrahedron Letters | 2000

Synthesis of biologically active N2-amine adducts of 2′-deoxyguanosine

Radha Bonala; Irina G. Shishkina; Francis Johnson

Abstract Several biologically important N2-adducts of 2′-deoxyguanosine (dG) that previously were difficultly accessible, have been synthesized directly by means of the Buchwald–Hartwig reaction. The reaction employed in each case involves the coupling of 2′-deoxy-2-bromoinosine with the appropriate amine. Deprotection in all cases gave good yields of the desired 2-alkylated or -arylated deoxynucleoside.


Chemical Research in Toxicology | 2014

Total Synthesis of the Aristolochic Acids, Their Major Metabolites, and Related Compounds

Sivaprasad Attaluri; Charles R. Iden; Radha Bonala; Francis Johnson

Plants from the Aristolochia genus have been recommended for the treatment of a variety of human ailments since the time of Hippocrates. However, many species produce the highly toxic aristolochic acids (AAs), which are both nephrotoxic and carcinogenic. For the purposes of extensive biological studies, a versatile approach to the synthesis of the AAs and their major metabolites was devised based primarily on a Suzuki–Miyaura coupling reaction. The key to success lies in the preparation of a common ring-A precursor, namely, the tetrahydropyranyl ether of 2-nitromethyl-3-iodo-4,5-methylendioxybenzyl alcohol (27), which was generated in excellent yield by oxidation of the aldoxime precursor 26. Suzuki–Miyaura coupling of 27 with a variety of benzaldehyde 2-boronates was accompanied by an aldol condensation/elimination reaction to give the desired phenanthrene intermediate directly. Deprotection of the benzyl alcohol followed by two sequential oxidation steps gave the desired phenanthrene nitrocarboxylic acids. This approach was used to synthesize AAs I–IV and several other related compounds, including AA I and AA II bearing an aminopropyloxy group at position-6, which were required for further conversion to fluorescent biological probes. Further successful application of the Suzuki–Miyaura coupling reaction to the synthesis of the N-hydroxyaristolactams of AA I and AA II then allowed the synthesis of the putative, but until now elusive, N-acetoxy- and N-sulfonyloxy-aristolactam metabolites.


Carcinogenesis | 2016

Sulfotransferase-1A1-Dependent Bioactivation of Aristolochic Acid I and N-hydroxyaristolactam I in Human Cells

Keiji Hashimoto; Irina Zaitseva; Radha Bonala; Sivaprasad Attaluri; Katherine Ozga; Charles R. Iden; Francis Johnson; Masaaki Moriya; Arthur P. Grollman; Viktoriya S. Sidorenko

Aristolochic acids (AA) are implicated in the development of chronic renal disease and upper urinary tract carcinoma in humans. Using in vitro approaches, we demonstrated that N-hydroxyaristolactams, metabolites derived from partial nitroreduction of AA, require sulfotransferase (SULT)-catalyzed conjugation with a sulfonyl group to form aristolactam-DNA adducts. Following up on this observation, bioactivation of AA-I and N-hydroxyaristolactam I (AL-I-NOH) was studied in human kidney (HK-2) and skin fibroblast (GM00637) cell lines. Pentachlorophenol, a known SULT inhibitor, significantly reduced cell death and aristolactam-DNA adduct levels in HK-2 cells following exposure to AA-I and AL-I-NOH, suggesting a role for Phase II metabolism in AA activation. A gene knockdown, siRNA approach was employed to establish the involvement of selected SULTs and nitroreductases in AA-I bioactivation. Silencing of SULT1A1 and PAPSS2 led to a significant decrease in aristolactam-DNA levels in both cell lines following exposure to AA-I, indicating the critical role for sulfonation in the activation of AA-I in vivo Since HK-2 cells proved relatively resistant to knockdown with siRNAs, gene silencing of xanthine oxidoreductase, cytochrome P450 oxidoreductase and NADPH:quinone oxidoreductase was conducted in GM00637 cells, showing a significant increase, decrease and no effect on aristolactam-DNA levels, respectively. In GM00637 cells exposed to AL-I-NOH, suppressing the SULT pathway led to a significant decrease in aristolactam-DNA formation, mirroring data obtained for AA-I. We conclude from these studies that SULT1A1 is involved in the bioactivation of AA-I through the sulfonation of AL-I-NOH, contributing significantly to the toxicities of AA observed in vivo.

Collaboration


Dive into the Radha Bonala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huan Dong

Stony Brook University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge