Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Radhika Menon is active.

Publication


Featured researches published by Radhika Menon.


PLOS ONE | 2011

An antiretroviral/zinc combination gel provides 24 hours of complete protection against vaginal SHIV infection in macaques.

Jessica Kenney; Meropi Aravantinou; Rachel Singer; Mayla Hsu; Aixa Rodriguez; Larisa Kizima; Ciby J. Abraham; Radhika Menon; Samantha Seidor; Anne Chudolij; Agegnehu Gettie; James Blanchard; Jeffrey D. Lifson; Michael Piatak; José A. Fernández-Romero; Thomas M. Zydowsky; Melissa Robbiani

Background Repeated use, coitus-independent microbicide gels that do not contain antiretroviral agents also used as first line HIV therapy are urgently needed to curb HIV spread. Current formulations require high doses (millimolar range) of antiretroviral drugs and typically only provide short-term protection in macaques. We used the macaque model to test the efficacy of a novel combination microbicide gel containing zinc acetate and micromolar doses of the novel non-nucleoside reverse transcriptase inhibitor MIV-150 for up to 24 h after repeated gel application. Methods and Findings Rhesus macaques were vaginally challenged with SHIV-RT up to 24 h after repeated administration of microbicide versus placebo gels. Infection status was determined by measuring virologic and immunologic parameters. Combination microbicide gels containing 14 mM zinc acetate dihydrate and 50 µM MIV-150 afforded full protection (21 of 21 animals) for up to 24 h after 2 weeks of daily application. Partial protection was achieved with the MIV-150 gel (56% of control at 8 h after last application, 11% at 24 h), while the zinc acetate gel afforded more pronounced protection (67% at 8–24 h). Marked protection persisted when the zinc acetate or MIV-150/zinc acetate gels were applied every other day for 4 weeks prior to challenge 24 h after the last gel was administered (11 of 14 protected). More MIV-150 was associated with cervical tissue 8 h after daily dosing of MIV-150/zinc acetate versus MIV-150, while comparable MIV-150 levels were associated with vaginal tissues and at 24 h. Conclusions A combination MIV-150/zinc acetate gel and a zinc acetate gel provide significant protection against SHIV-RT infection for up to 24 h. This represents a novel advancement, identifying microbicides that do not contain anti-viral agents used to treat HIV infection and which can be used repeatedly and independently of coitus, and underscores the need for future clinical testing of their safety and ability to prevent HIV transmission in humans.


Science Translational Medicine | 2012

An Intravaginal Ring That Releases the NNRTI MIV-150 Reduces SHIV Transmission in Macaques

Rachel Singer; Paul Mawson; Nina Derby; Aixa Rodriguez; Larisa Kizima; Radhika Menon; Daniel Goldman; Jessica Kenney; Meropi Aravantinou; Samantha Seidor; Agegnehu Gettie; James Blanchard; Michael Piatak; Jeffrey D. Lifson; José A. Fernández-Romero; Melissa Robbiani; Thomas M. Zydowsky

An intravaginal ring loaded with the NNRTI MIV-150 prevents transmission of the HIV/SIV chimera SHIV-RT in macaques. HIV Protection That Has a Ring to It An ounce of prevention is better than a pound of cure. This is especially true for HIV, where no cure exists. Pre-exposure prophylaxis is showing promising results in preventing HIV transmission in early clinical trials, but the means of delivery of active pharmaceutical ingredients remains a major challenge. Singer et al. now show that the non-nucleoside reverse transcriptase inhibitor MIV-150 delivered by intravaginal rings can protect macaques from simian/HIV (SHIV) infection. For pre-exposure prophylaxis to be successful, individuals must remember and be willing to treat themselves regularly. Intravaginal rings are well tolerated among women and—through sustained release—can help overcome this adherence bottleneck. The authors test the efficacy of MIV-150 when delivered by intravaginal rings made of either ethylene vinyl acetate or silicone. MIV-150 was successfully delivered to vaginal fluids and tissues and protected macaques from SHIV infection. If these studies hold true in people, intravaginal rings containing MIV-150 may help prevent HIV infection. Microbicides may prevent HIV and sexually transmitted infections (STIs) in women; however, determining the optimal means of delivery of active pharmaceutical ingredients remains a major challenge. We previously demonstrated that a vaginal gel containing the non-nucleoside reverse transcriptase inhibitor MIV-150 partially protected macaques from SHIV-RT (simian/HIV reverse transcriptase) infection, and the addition of zinc acetate rendered the gel significantly protective. We test the activity of MIV-150 without the addition of zinc acetate when delivered from either ethylene vinyl acetate (EVA) or silicone intravaginal rings (IVRs). MIV-150 was successfully delivered, because it was detected in vaginal fluids and tissues by radioimmunoassay in pharmacokinetic studies. Moreover, EVA IVRs significantly protected macaques from SHIV-RT infection. Our results demonstrate that MIV-150–containing IVRs have the potential to prevent HIV infection and highlight the possible use of IVRs for delivering drugs that block HIV and other STIs.


Antimicrobial Agents and Chemotherapy | 2012

Zinc Acetate/Carrageenan Gels Exhibit Potent Activity In Vivo against High-Dose Herpes Simplex Virus 2 Vaginal and Rectal Challenge

José A. Fernández-Romero; Ciby J. Abraham; Aixa Rodriguez; Larisa Kizima; Ninochka Jean-Pierre; Radhika Menon; Samantha Seidor; Brian E. Ford; Pedro Gil; Jennifer J. Peters; David F. Katz; Melissa Robbiani; Thomas M. Zydowsky

ABSTRACT Topical microbicides that block the sexual transmission of HIV and herpes simplex virus 2 (HSV-2) are desperately needed to reduce the incidence of HIV infections worldwide. Previously we completed phase 3 testing of the carrageenan-based gel Carraguard. Although the trial did not show that Carraguard is effective in preventing HIV transmission during vaginal sex, it did show that Carraguard is safe when used weekly for up to 2 years. Moreover, Carraguard has in vitro activity against human papillomavirus (HPV) and HSV-2 and favorable physical and rheological properties, which makes it a useful vehicle to deliver antiviral agents such as zinc acetate. To that end, we previously reported that a prototype zinc acetate carrageenan gel protects macaques against vaginal challenge with combined simian-human immunodeficiency virus reverse transcriptase (SHIV-RT). Herein, we report the safety and efficacy of a series of zinc acetate and/or carrageenan gels. The gels protected mice (75 to 85% survival; P < 0.001) against high-dose (106-PFU) HSV-2 vaginal or rectal challenge. In contrast, zinc acetate formulated in HEC (hydroxyethylcellulose; or the Universal Placebo) failed to protect mice against the high-dose vaginal HSV-2 challenge (similar to aqueous zinc acetate solution and the placebo controls). The gels were found to be effective spreading gels, exhibited limited toxicity in vitro, caused minimal damage to the architecture of the cervicovaginal and rectal mucosae in vivo, and induced no increased susceptibility to HSV-2 infection in a mouse model. Our results provide a strong rationale to further optimize and evaluate the zinc acetate/carrageenan gels for their ability to block the sexual transmission of HIV and HSV-2.


PLOS ONE | 2014

A Potent Combination Microbicide that Targets SHIV-RT, HSV-2 and HPV

Larisa Kizima; Aixa Rodriguez; Jessica Kenney; Nina Derby; Olga Mizenina; Radhika Menon; Samantha Seidor; Shimin Zhang; Keith Levendosky; Ninochka Jean-Pierre; Pavel Pugach; Guillermo Villegas; Brian E. Ford; Agegnehu Gettie; James Blanchard; Michael Piatak; Jeffrey D. Lifson; Gabriela Paglini; Natalia Teleshova; Thomas M. Zydowsky; Melissa Robbiani; José A. Fernández-Romero

Prevalent infection with human herpes simplex 2 (HSV-2) or human papillomavirus (HPV) is associated with increased human immunodeficiency virus (HIV) acquisition. Microbicides that target HIV as well as these sexually transmitted infections (STIs) may more effectively limit HIV incidence. Previously, we showed that a microbicide gel (MZC) containing MIV-150, zinc acetate (ZA) and carrageenan (CG) protected macaques against simian-human immunodeficiency virus (SHIV-RT) infection and that a ZC gel protected mice against HSV-2 infection. Here we evaluated a modified MZC gel (containing different buffers, co-solvents, and preservatives suitable for clinical testing) against both vaginal and rectal challenge of animals with SHIV-RT, HSV-2 or HPV. MZC was stable and safe in vitro (cell viability and monolayer integrity) and in vivo (histology). MZC protected macaques against vaginal (p<0.0001) SHIV-RT infection when applied up to 8 hours (h) prior to challenge. When used close to the time of challenge, MZC prevented rectal SHIV-RT infection of macaques similar to the CG control. MZC significantly reduced vaginal (p<0.0001) and anorectal (p = 0.0187) infection of mice when 106 pfu HSV-2 were applied immediately after vaginal challenge and also when 5×103 pfu were applied between 8 h before and 4 h after vaginal challenge (p<0.0248). Protection of mice against 8×106 HPV16 pseudovirus particles (HPV16 PsV) was significant for MZC applied up to 24 h before and 2 h after vaginal challenge (p<0.0001) and also if applied 2 h before or after anorectal challenge (p<0.0006). MZC provides a durable window of protection against vaginal infection with these three viruses and, against HSV-2 and HPV making it an excellent candidate microbicide for clinical use.


Antimicrobial Agents and Chemotherapy | 2013

A Modified Zinc Acetate Gel, a Potential Nonantiretroviral Microbicide, Is Safe and Effective against Simian-Human Immunodeficiency Virus and Herpes Simplex Virus 2 Infection In Vivo

Jessica Kenney; Aixa Rodriguez; Larisa Kizima; Samantha Seidor; Radhika Menon; Ninochka Jean-Pierre; Pavel Pugach; Keith Levendosky; Nina Derby; Agegnehu Gettie; James Blanchard; Michael Piatak; Jeffrey D. Lifson; Gabriela Paglini; Thomas M. Zydowsky; Melissa Robbiani; José A. Fernández Romero

ABSTRACT We previously showed that a prototype gel comprising zinc acetate (ZA) in carrageenan (CG) protected mice against vaginal and rectal herpes simplex virus 2 (HSV-2) challenge as well as macaques against vaginal simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) challenge. In this work, we modified buffers and cosolvents to obtain a stable, nearly iso-osmolal formulation and evaluated its safety and efficacy against SHIV-RT and HSV-2. In vitro toxicity to lactobacilli and Candida albicans was determined. Macaques were given daily doses of ZA and CG (ZA/CG) or CG alone vaginally for 14 days and challenged with SHIV-RT 24 h later. Mice were challenged vaginally or rectally with HSV-2 immediately after a single gel treatment to measure efficacy or vaginally 12 h after daily gel treatment for 7 days to evaluate the gels impact on susceptibility to HSV-2 infection. The modified ZA/CG neither affected the viability of lactobacilli or C. albicans nor enhanced vaginal HSV-2 infection after daily ZA/CG treatment. Vaginal SHIV-RT infection of macaques was reduced by 66% (P = 0.006) when macaques were challenged 24 h after the last dose of gel. We observed 60% to 80% uninfected mice after vaginal (P < 0.0001) and rectal (P = 0.008) high-dose HSV-2 challenge. The modified ZA/CG gel is safe and effective in animal models and represents a potential candidate to limit the transmission of HIV and HSV-2.


Antimicrobial Agents and Chemotherapy | 2015

MIV-150/Zinc Acetate Gel Inhibits Cell-Associated Simian-Human Immunodeficiency Virus Reverse Transcriptase Infection in a Macaque Vaginal Explant Model

Patrick Barnable; Giulia Calenda; Thierry Bonnaire; Radhika Menon; Keith Levendosky; Agegnehu Gettie; James Blanchard; Michael L. Cooney; José A. Fernández-Romero; Thomas M. Zydowsky; Natalia Teleshova

ABSTRACT The transmission of both cell-free and cell-associated immunodeficiency viruses has been demonstrated directly in multiple animal species and possibly occurs in humans, as suggested by genotyping of the infecting human immunodeficiency virus (HIV) in acutely infected women and in semen from their partners. Therefore, a microbicide may need to block both mechanisms of HIV transmission to achieve maximum efficacy. To date, most of the preclinical evaluation of candidate microbicides has been performed using cell-free HIV. New models of mucosal transmission of cell-associated HIV are needed to evaluate candidate microbicide performance. The MIV-150/zinc acetate/carrageenan (MZC) gel protects Depo-Provera-treated macaques against cell-free simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) infection when applied vaginally up to 8 h before challenge. We recently demonstrated the potent activity of MZC gel against cell-free SHIV-RT in macaque vaginal explants. In the current study, we established a cell-associated SHIV-RT infection model of macaque vaginal tissues and tested the activity of MZC gel in this model. MZC gel protected tissues against cell-associated SHIV-RT infection when present at the time of viral exposure or when applied up to 4 days prior to viral challenge. These data support clinical testing of the MZC gel. Overall, our ex vivo model of cell-associated SHIV-RT infection in macaque vaginal mucosa complements the cell-free infection models, providing tools for prioritization of products that block both modes of HIV transmission.


PLOS ONE | 2014

A MIV-150/Zinc Acetate Gel Inhibits SHIV-RT Infection in Macaque Vaginal Explants

Patrick Barnable; Giulia Calenda; Louise Ouattara; Agegnehu Gettie; James Blanchard; Ninochka Jean-Pierre; Larisa Kizima; Aixa Rodriguez; Ciby J. Abraham; Radhika Menon; Samantha Seidor; Michael L. Cooney; Kevin Roberts; Rhoda S. Sperling; Michael Piatak; Jeffrey D. Lifson; José A. Fernández-Romero; Thomas M. Zydowsky; Melissa Robbiani; Natalia Teleshova

To extend our observations that single or repeated application of a gel containing the NNRTI MIV-150 (M) and zinc acetate dihydrate (ZA) in carrageenan (CG) (MZC) inhibits vaginal transmission of simian/human immunodeficiency virus (SHIV)-RT in macaques, we evaluated safety and anti-SHIV-RT activity of MZC and related gel formulations ex vivo in macaque mucosal explants. In addition, safety was further evaluated in human ectocervical explants. The gels did not induce mucosal toxicity. A single ex vivo exposure to diluted MZC (1∶30, 1∶100) and MC (1∶30, the only dilution tested), but not to ZC gel, up to 4 days prior to viral challenge, significantly inhibited SHIV-RT infection in macaque vaginal mucosa. MZCs activity was not affected by seminal plasma. The antiviral activity of unformulated MIV-150 was not enhanced in the presence of ZA, suggesting that the antiviral activity of MZC was mediated predominantly by MIV-150. In vivo administration of MZC and CG significantly inhibited ex vivo SHIV-RT infection (51–62% inhibition relative to baselines) of vaginal (but not cervical) mucosa collected 24 h post last gel exposure, indicating barrier effect of CG. Although the inhibitory effect of MZC (65–74%) did not significantly differ from CG (32–45%), it was within the range of protection (∼75%) against vaginal SHIV-RT challenge 24 h after gel dosing. Overall, the data suggest that evaluation of candidate microbicides in macaque explants can inform macaque efficacy and clinical studies design. The data support advancing MZC gel for clinical evaluation.


AIDS Research and Human Retroviruses | 2012

A single dose of a MIV-150/Zinc acetate gel provides 24 h of protection against vaginal simian human immunodeficiency virus reverse transcriptase infection, with more limited protection rectally 8-24 h after gel use.

Jessica Kenney; Rachel Singer; Nina Derby; Meropi Aravantinou; Ciby J. Abraham; Radhika Menon; Samantha Seidor; Shimin Zhang; Agegnehu Gettie; James F. Blanchard; Michael Piatak; Jeffrey D. Lifson; José A. Fernández-Romero; Thomas M. Zydowsky; Melissa Robbiani


AIDS Research and Human Retroviruses | 2012

The Nonnucleoside Reverse Transcription Inhibitor MIV-160 Delivered from an Intravaginal Ring, But Not from a Carrageenan Gel, Protects Against Simian/Human Immunodeficiency Virus-RT Infection

Meropi Aravantinou; Rachel Singer; Nina Derby; Giulia Calenda; Paul Mawson; Ciby J. Abraham; Radhika Menon; Samantha Seidor; Daniel Goldman; Jessica Kenney; Guillermo Villegas; Agegnehu Gettie; James F. Blanchard; Jeffrey D. Lifson; Michael Piatak; José A. Fernández-Romero; Thomas M. Zydowsky; Natalia Teleshova; Melissa Robbiani


AIDS Research and Human Retroviruses | 2014

A Combination Microbicide Gel Protects Macaques Against Vaginal Simian Human Immunodeficiency Virus-Reverse Transcriptase Infection, But Only Partially Reduces Herpes Simplex Virus-2 Infection After a Single High-Dose Cochallenge

Mayla Hsu; Meropi Aravantinou; Radhika Menon; Samantha Seidor; Daniel Goldman; Jessica Kenney; Nina Derby; Agegnehu Gettie; James F. Blanchard; Michael Piatak; Jeffrey D. Lifson; José A. Fernández-Romero; Thomas M. Zydowsky; Melissa Robbiani

Collaboration


Dive into the Radhika Menon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Agegnehu Gettie

Aaron Diamond AIDS Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge