Radia Forteza
University of Miami
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Radia Forteza.
Free Radical Biology and Medicine | 2009
Monica Valencia Gattas; Radia Forteza; Miryam A. Fragoso; Nevis Fregien; Pedro J. Salas; Matthias Salathe; Gregory E. Conner
Epithelia express oxidative antimicrobial protection that uses lactoperoxidase (LPO), hydrogen peroxide (H(2)O(2)), and thiocyanate to generate the reactive hypothiocyanite. Duox1 and Duox2, found in epithelia, are hypothesized to provide H(2)O(2) for use by LPO. To investigate the regulation of oxidative LPO-mediated host defense by bacterial and inflammatory stimuli, LPO and Duox mRNA were followed in differentiated primary human airway epithelial cells challenged with Pseudomonas aeruginosa flagellin or IFN-gamma. Flagellin upregulated Duox2 mRNA 20-fold, but upregulated LPO mRNA only 2.5-fold. IFN-gamma increased Duox2 mRNA 127-fold and upregulated LPO mRNA 10-fold. DuoxA2, needed for Duox2 activity, was also upregulated by flagellin and IFN-gamma. Both stimuli increased H(2)O(2) synthesis and LPO-dependent killing of P. aeruginosa. Reduction of Duox1 by siRNA showed little effect on basal H(2)O(2) production, whereas Duox2 siRNA markedly reduced basal H(2)O(2) production and resulted in an 8-fold increase in Nox4 mRNA. In conclusion, large increases in Duox2-mediated H(2)O(2) production seem to be coordinated with increases in LPO mRNA and, without increased LPO, H(2)O(2) levels in airway secretion are expected to increase substantially. The data suggest that Duox2 is the major contributor to basal H(2)O(2) synthesis despite the presence of greater amounts of Duox1.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2014
Dmitri V. Kravtsov; Anastasia Mashukova; Radia Forteza; Maria M. Rodriguez; Nadia A. Ameen; Pedro J. Salas
Microvillus inclusion disease (MVID) is an autosomal recessive condition resulting in intractable secretory diarrhea in newborns due to loss-of-function mutations in myosin Vb (Myo5b). Previous work suggested that the apical recycling endosomal (ARE) compartment is the primary location for phosphoinositide-dependent protein kinase 1 (PDK1) signaling. Because the ARE is disrupted in MVID, we tested the hypothesis that polarized signaling is affected by Myo5b dysfunction. Subcellular distribution of PDK1 was analyzed in human enterocytes from MVID/control patients by immunocytochemistry. Using Myo5b knockdown (kd) in Caco-2BBe cells, we studied phosphorylated kinases downstream of PDK1, electrophysiological parameters, and net water flux. PDK1 was aberrantly localized in human MVID enterocytes and Myo5b-deficient Caco-2BBe cells. Two PDK1 target kinases were differentially affected: phosphorylated atypical protein kinase C (aPKC) increased fivefold and phosohoprotein kinase B slightly decreased compared with control. PDK1 redistributed to a soluble (cytosolic) fraction and copurified with basolateral endosomes in Myo5b kd. Myo5b kd cells showed a decrease in net water absorption that could be reverted with PDK1 inhibitors. We conclude that, in addition to altered apical expression of ion transporters, depolarization of PDK1 in MVID enterocytes may lead to aberrant activation of downstream kinases such as aPKC. The findings in this work suggest that PDK1-dependent signaling may provide a therapeutic target for treating MVID.
Molecular Biology of the Cell | 2012
Anastasia Mashukova; Radia Forteza; Flavia A. Wald; Pedro J. Salas
The polarity complex atypical PKC (aPKC) is rescued from degradation on intermediate filaments by Hsp70 chaperoning. The results indicate that PDK1 participates in the rescue mechanism and is localized to apical endosomes. Inhibition of dynamin-dependent endocytosis greatly decreases the steady-state levels of aPKC and Akt in their active conformation.
Virchows Archiv | 2011
Flavia A. Wald; Radia Forteza; Runa Diwadkar-Watkins; Anastasia Mashukova; Robert Duncan; Maria T. Abreu; Pedro J. Salas
Epithelial barrier function is contingent on appropriate polarization of key protein components. Work in intestinal epithelial cell cultures and animal models of bowel inflammation suggested that atypical PKC (aPKC), the kinase component of the Par3–Par6 polarity complex, is downregulated by pro-inflammatory signaling. Data from other laboratories showed the participation of myosin light chain kinase in intestinal inflammation, but there is paucity of evidence for assembly of its major target, non-muscle myosin II, in inflammatory bowel disease (IBD). In addition, we showed before that non-muscle myosin IIA (nmMyoIIA) is upregulated in intestinal inflammation in mice and TNFα-treated Caco-2 cells. Thus far, it is unknown if a similar phenomena occur in patients with IBD. Moreover, it is unclear whether aPKC downregulation is directly correlated with local mucosal inflammation or occurs in uninvolved areas. Frozen sections from colonoscopy material were stained for immunofluorescence with extensively validated specific antibodies against phosphorylated aPKC turn motif (active form) and nmMyoIIA. Inflammation was scored for the local area from where the material was obtained. We found a significant negative correlation between the expression of active aPKC and local inflammation, and a significant increase in the apical expression of nmMyoIIA in surface colon epithelia in inflamed areas, but not in non-inflamed mucosa even in the same patients. Changes in aPKC and nmMyoIIA expression are likely to participate in the pathogenesis of epithelial barrier function in response to local pro-inflammatory signals. These results provide a rationale for pursuing mechanistic studies on the regulation of these proteins.
Tissue barriers | 2016
Pedro J. Salas; Radia Forteza; Anastasia Mashukova
abstract As multicellular organisms evolved a family of cytoskeletal proteins, the keratins (types I and II) expressed in epithelial cells diversified in more than 20 genes in vertebrates. There is no question that keratin filaments confer mechanical stiffness to cells. However, such a number of genes can hardly be explained by evolutionary advantages in mechanical features. The use of transgenic mouse models has revealed unexpected functional relationships between keratin intermediate filaments and intracellular signaling. Accordingly, loss of keratins or mutations in keratins that cause or predispose to human diseases, result in increased sensitivity to apoptosis, regulation of innate immunity, permeabilization of tight junctions, and mistargeting of apical proteins in different epithelia. Precise mechanistic explanations for these phenomena are still lacking. However, immobilization of membrane or cytoplasmic proteins, including chaperones, on intermediate filaments (“scaffolding”) appear as common molecular mechanisms and may explain the need for so many different keratin genes in vertebrates.
Journal of Cell Science | 2014
Anastasia Mashukova; Zhanna Kozhekbaeva; Radia Forteza; Vipin Dulam; Yolanda Figueroa; Robert H. Warren; Pedro J. Salas
ABSTRACT Atypical PKC (&igr;/&lgr; and &zgr;; hereafter referred to as aPKC) is a key player in the acquisition of epithelial polarity and participates in other signaling cascades including the control of NF-&kgr;B signaling. This kinase is post-translationally regulated through Hsp70-mediated refolding. Previous work has shown that such a chaperoning activity is specifically localized to keratin intermediate filaments. Our work was performed with the goal of identifying the molecule(s) that block Hsp70 activity on keratin filaments during inflammation. A transcriptional screen allowed us to focus on BAG-1, a multi-functional protein that assists Hsp70 in nucleotide exchange but also blocks its activity at higher concentrations. We found the BAG-1 isoform BAG-1M upregulated threefold in human Caco-2 cells following stimulation with tumor necrosis factor receptor &agr; (TNF&agr;) to induce a pro-inflammatory response, and up to sixfold in mouse enterocytes following treatment with dextran sodium sulfate (DSS) to induce colitis. BAG-1M, but no other isoform, was found to co-purify with intermediate filaments and block Hsp70 activity in the keratin fraction but not in the soluble fraction within the range of concentrations found in epithelial cells cultured under control and inflammation conditions. Constitutive expression of BAG-1M decreased levels of phosphorylated aPKC. By contrast, knockdown of BAG-1, blocked the TNF&agr;-induced decrease of phosphorylated aPKC. We conclude that BAG-1M mediates Hsp70 inhibition downstream of NF-&kgr;B.
Biology Open | 2013
Radia Forteza; Flavia A. Wald; Anastasia Mashukova; Zhanna Kozhekbaeva; Pedro J. Salas
Summary Components of the Par-complex, atypical PKC and Par3, have been found to be downregulated upon activation of NF-&kgr;B in intestinal epithelial cells. To determine their possible role in pro-inflammatory responses we transduced Caco-2 human colon carcinoma cells with constitutively active (ca) PKC&igr; or anti-Par3 shRNA-expressing lentiviral particles. Contrary to previous reports in other cell types, ca-PKC&igr; did not activate, but rather decreased, baseline NF-&kgr;B activity in a luminiscence reporter assay. An identical observation applied to a PB1 domain deletion PKC&igr;, which fails to localize to the tight-junction. Conversely, as expected, the same ca-PKC&igr; activated NF-&kgr;B in non-polarized HEK293 cells. Likewise, knockdown of Par3 increased NF-&kgr;B activity and, surprisingly, greatly enhanced its response to TNF&agr;, as shown by transcription of IL-8, GRO-1, GRO-2 and GRO-3. We conclude that aPKC and Par3 are inhibitors of the canonical NF-&kgr;B activation pathway, although perhaps acting through independent pathways, and may be involved in pro-inflammatory responses.
Molecular Biology of the Cell | 2016
Radia Forteza; Yolanda Figueroa; Anastasia Mashukova; Vipin Dulam; Pedro J. Salas
Atypical PKC, Par6, and Par3 constitute a conserved complex signaling cell asymmetry. In contrast to its role in other tissues, atypical PKC inhibits NF-κB activation in epithelia and may function in maintaining low levels of inflammation in addition to establishing apicobasal polarity.
Archive | 2016
Anastasia Mashukova; Radia Forteza; Pedro J. Salas
A growing body of evidence from several laboratories points at nonmechanical functions of keratin intermediate filaments (IF), such as control of apoptosis, modulation of signaling, or regulation of innate immunity, among others. While these functions are generally assigned to the ability of IF to scaffold other proteins, direct mechanistic causal relationships between filamentous keratins and the observed effects of keratin knockout or mutations are still missing. We have proposed that the scaffolding of chaperones such as Hsp70/40 may be key to understand some IF nonmechanical functions if unique features or specificity of the chaperoning activity in the IF scaffold can be demonstrated. The same criteria of uniqueness could be applied to other biochemical functions of the IF scaffold. Here, we describe a subcellular fractionation technique based on established methods of keratin purification. The resulting keratin-enriched fraction contains several proteins tightly associated with the IF scaffold, including Hsp70/40 chaperones. Being nondenaturing, this fractionation method enables direct testing of chaperoning and other enzymatic activities associated with IF, as well as supplementation experiments to determine the need for soluble (cytosolic) proteins. This method also permits to analyze inhibitory activity of cytosolic proteins at independently characterized physiological concentrations. When used as complementary approaches to knockout, knockdown, or site-directed mutagenesis, these techniques are expected to shed light on molecular mechanisms involved in the effects of IF loss of function.
Methods in Enzymology | 2016
Anastasia Mashukova; Radia Forteza; Pedro J. Salas
A growing body of evidence from several laboratories points at nonmechanical functions of keratin intermediate filaments (IF), such as control of apoptosis, modulation of signaling, or regulation of innate immunity, among others. While these functions are generally assigned to the ability of IF to scaffold other proteins, direct mechanistic causal relationships between filamentous keratins and the observed effects of keratin knockout or mutations are still missing. We have proposed that the scaffolding of chaperones such as Hsp70/40 may be key to understand some IF nonmechanical functions if unique features or specificity of the chaperoning activity in the IF scaffold can be demonstrated. The same criteria of uniqueness could be applied to other biochemical functions of the IF scaffold. Here, we describe a subcellular fractionation technique based on established methods of keratin purification. The resulting keratin-enriched fraction contains several proteins tightly associated with the IF scaffold, including Hsp70/40 chaperones. Being nondenaturing, this fractionation method enables direct testing of chaperoning and other enzymatic activities associated with IF, as well as supplementation experiments to determine the need for soluble (cytosolic) proteins. This method also permits to analyze inhibitory activity of cytosolic proteins at independently characterized physiological concentrations. When used as complementary approaches to knockout, knockdown, or site-directed mutagenesis, these techniques are expected to shed light on molecular mechanisms involved in the effects of IF loss of function.