Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Radovan Bast is active.

Publication


Featured researches published by Radovan Bast.


Wiley Interdisciplinary Reviews: Computational Molecular Science | 2014

The Dalton quantum chemistry program system

Kestutis Aidas; Celestino Angeli; Keld L. Bak; Vebjørn Bakken; Radovan Bast; Linus Boman; Ove Christiansen; Renzo Cimiraglia; Sonja Coriani; Pål Dahle; Erik K. Dalskov; Ulf Ekström; Thomas Enevoldsen; Janus Juul Eriksen; Patrick Ettenhuber; Berta Fernández; Lara Ferrighi; Heike Fliegl; Luca Frediani; Kasper Hald; Asger Halkier; Christof Hättig; Hanne Heiberg; Trygve Helgaker; Alf C. Hennum; Hinne Hettema; Eirik Hjertenæs; Stine Høst; Ida Marie Høyvik; Maria Francesca Iozzi

Dalton is a powerful general‐purpose program system for the study of molecular electronic structure at the Hartree–Fock, Kohn–Sham, multiconfigurational self‐consistent‐field, Møller–Plesset, configuration‐interaction, and coupled‐cluster levels of theory. Apart from the total energy, a wide variety of molecular properties may be calculated using these electronic‐structure models. Molecular gradients and Hessians are available for geometry optimizations, molecular dynamics, and vibrational studies, whereas magnetic resonance and optical activity can be studied in a gauge‐origin‐invariant manner. Frequency‐dependent molecular properties can be calculated using linear, quadratic, and cubic response theory. A large number of singlet and triplet perturbation operators are available for the study of one‐, two‐, and three‐photon processes. Environmental effects may be included using various dielectric‐medium and quantum‐mechanics/molecular‐mechanics models. Large molecules may be studied using linear‐scaling and massively parallel algorithms. Dalton is distributed at no cost from http://www.daltonprogram.org for a number of UNIX platforms.


Chirality | 2010

Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy†

Benoît Darquié; Clara Stoeffler; Alexander Shelkovnikov; Christophe Daussy; A. Amy-Klein; Christian Chardonnet; Samia Zrig; Laure Guy; Jeanne Crassous; Pascale Soulard; Pierre Asselin; Thérèse R. Huet; Peter Schwerdtfeger; Radovan Bast; Trond Saue

Parity violation (PV) effects in chiral molecules have so far never been experimentally observed. To take up this challenge, a consortium of physicists, chemists, theoreticians, and spectroscopists has been established and aims at measuring PV energy differences between two enantiomers by using high-resolution laser spectroscopy. In this article, we present our common strategy to reach this goal, the progress accomplished in the diverse areas, and point out directions for future PV observations. The work of André Collet on bromochlorofluoromethane (1) enantiomers, their synthesis, and their chiral recognition by cryptophanes made feasible the first generation of experiments presented in this article.


Journal of Chemical Theory and Computation | 2010

Arbitrary-Order Density Functional Response Theory from Automatic Differentiation

Ulf Ekström; Lucas Visscher; Radovan Bast; Andreas J. Thorvaldsen; Kenneth Ruud

We demonstrate how the functional derivatives appearing in perturbative time-dependent density functional theory can be calculated using automatic differentiation. The approach starts from a computer implementation of the exchange-correlation energy functional, from which arbitrary-order derivatives are generated automatically. Automatic differentiation is shown to provide an accurate, general, and efficient implementation of higher-order exchange-correlation functional derivatives that is easy to maintain. When used in combination with an arbitrary-order response solver, the methodology allows us to generate arbitrary-order response functions from time-dependent density functional theory.


Journal of Chemical Physics | 2012

A simple scheme for magnetic balance in four-component relativistic Kohn–Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis

Małgorzata Olejniczak; Radovan Bast; Trond Saue; Magdalena Pecul

We report the implementation of nuclear magnetic resonance (NMR) shielding tensors within the four-component relativistic Kohn-Sham density functional theory including non-collinear spin magnetization and employing London atomic orbitals to ensure gauge origin independent results, together with a new and efficient scheme for assuring correct balance between the large and small components of a molecular four-component spinor in the presence of an external magnetic field (simple magnetic balance). To test our formalism we have carried out calculations of NMR shielding tensors for the HX series (X = F, Cl, Br, I, At), the Xe atom, and the Xe dimer. The advantage of simple magnetic balance scheme combined with the use of London atomic orbitals is the fast convergence of results (when compared with restricted kinetic balance) and elimination of linear dependencies in the basis set (when compared to unrestricted kinetic balance). The effect of including spin magnetization in the description of NMR shielding tensor has been found important for hydrogen atoms in heavy HX molecules, causing an increase of isotropic values of 10%, but negligible for heavy atoms.


Journal of Chemical Theory and Computation | 2013

All-Metal Aromaticity: Revisiting the Ring Current Model among Transition Metal Clusters

Zahra Badri; Shubhrodeep Pathak; Heike Fliegl; Parviz Rashidi-Ranjbar; Radovan Bast; Radek Marek; Cina Foroutan-Nejad; Kenneth Ruud

We present new insight into the nature of aromaticity in metal clusters. We give computational arguments in favor of using the ring-current model over local indices, such as nucleus independent chemical shifts, for the determination of the magnetic aromaticity. Two approaches for estimating magnetically induced ring currents are employed for this purpose, one based on the quantum theory of atoms in molecules (QTAIM) and the other where magnetically induced current densities (MICD) are explicitly calculated. We show that the two-zone aromaticity/antiaromaticity of a number of 3d metallic clusters (Sc3(-), Cu3(+), and Cu4(2-)) can be explained using the QTAIM-based magnetizabilities. The reliability of the calculated atomic and bond magnetizabilities of the metallic clusters are verified by comparison with MICD computed at the multiconfiguration self-consistent field (MCSCF) and density functional levels of theory. Integrated MCSCF current strength susceptibilities as well as a visual analysis of the calculated current densities confirm the interpretations based on the QTAIM magnetizabilities. In view of the new findings, we suggest a simple explanation based on classical electromagnetic theory to explain the anomalous magnetic shielding in different transition metal clusters. Our results suggest that the nature of magnetic aromaticity/antiaromaticity in transition-metal clusters should be assessed more carefully based on global indices.


Journal of Chemical Physics | 2010

Calculation of the first static hyperpolarizability tensor of three-dimensional periodic compounds with a local basis set: A comparison of LDA, PBE, PBE0, B3LYP, and HF results

Roberto Orlando; Valentina Lacivita; Radovan Bast; Kenneth Ruud

The computational scheme for the evaluation of the second-order electric susceptibility tensor in periodic systems, recently implemented in the CRYSTAL code within the coupled perturbed Hartree-Fock (HF) scheme, has been extended to local-density, gradient-corrected, and hybrid density functionals (coupled-perturbed Kohn-Sham) and applied to a set of cubic and hexagonal semiconductors. The method is based on the use of local basis sets and analytical calculation of derivatives. The high-frequency dielectric tensor (epsilon(infinity)) and second-harmonic generation susceptibility (d) have been calculated with hybrid functionals (PBE0 and B3LYP) and the HF approximation. Results are compared with the values of epsilon(infinity) and d obtained from previous plane-wave local density approximation or generalized gradient approximation calculations and from experiment. The agreement is in general good, although comparison with experiment is affected by a certain degree of uncertainty implicit in the experimental techniques.


Journal of Chemical Physics | 2003

The accuracy of density functionals for electric field gradients. Test calculations for ScX, CuX and GaX (X=F, Cl, Br, I, H and Li)

Radovan Bast; Peter Schwerdtfeger

In a previous paper [J. Chem. Phys. 111, 3357 (1999)] we showed that the electric field gradient at the copper nucleus in CuCl is incorrectly described by most of the density functionals currently in use, including gradient corrected and hybrid versions of DFT. Here we analyze whether this error is systematic or not by comparing DFT electric field gradients for a number of diatomic compounds MX. The molecules chosen include representatives from early transition metal compounds, ScX, from late transition metal compounds, CuX, and from main group compounds, GaX, where X=F, Cl, Br, I, H and Li. From experimental nuclear quadrupole coupling data and electric field gradient calculations for each of the three sets (ScX, CuX and GaX) the nuclear quadrupole moment at the metal can be deduced at a specific DFT level. It is demonstrated that density functionals work well for main group compounds (GaX), but contain large systematic errors for transition metals such as copper. This leads to unreasonable copper nuclea...


Journal of Chemical Physics | 2014

Analytic cubic and quartic force fields using density-functional theory

Magnus Ringholm; Dan Jonsson; Radovan Bast; Bin Gao; Andreas J. Thorvaldsen; Ulf Ekström; Trygve Helgaker; Kenneth Ruud

We present the first analytic implementation of cubic and quartic force constants at the level of Kohn-Sham density-functional theory. The implementation is based on an open-ended formalism for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with respect to nuclear displacements as well as automatic differentiation of the exchange-correlation kernels. We use generalized second-order vibrational perturbation theory to calculate the fundamental frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree-Fock results. The Hartree-Fock anharmonic corrections agree well with the B3LYP corrections when calculated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of electron correlation is not essential for the reliable calculation of cubic and quartic force constants.


Journal of Physical Chemistry A | 2012

Charge-Transfer Excitations in Uranyl Tetrachloride ([UO2Cl4](2-)): How Reliable are Electronic Spectra from Relativistic Time-Dependent Density Functional Theory?

Paweł Tecmer; Radovan Bast; Kenneth Ruud; Lucas Visscher

Four-component relativistic time-dependent density functional theory (TD-DFT) is used to study charge-transfer (CT) excitation energies of the uranyl molecule as well as the uranyl tetrachloride complex. Adiabatic excitation energies and vibrational frequencies of the excited states are calculated for the lower energy range of the spectrum. The results for TD-DFT with the CAM-B3LYP exchange-correlation functional for the [UO(2)Cl(4)](2-) system are in good agreement with the experimentally observed spectrum of this species and agree also rather well with other theoretical data. Use of the global hybrid B3LYP gives qualitatively correct results, while use of the BLYP functional yields results that are qualitatively wrong due to the too low CT states calculated with this functional. The applicability of the overlap diagnostic of Peach et al. (J. Chem. Phys.2008, 128, 044118) to identify such CT excitations is investigated for a wide range of vertical transitions using results obtained with three different approximate exchange-correlation functionals: BLYP, B3LYP, and CAM-B3LYP.


Journal of Chemical Physics | 2005

The quadrupole moment of the 3∕2+ nuclear ground state of Au197 from electric field gradient relativistic coupled cluster and density-functional theory of small molecules and the solid state

Peter Schwerdtfeger; Radovan Bast; Michael C. L. Gerry; Christoph R. Jacob; Martin Jansen; Vladimir Kellö; Anja V. Mudring; Andrzej J. Sadlej; Trond Saue; Tilo Söhnel; Friedrich E. Wagner

An attempt is made to improve the currently accepted muonic value for the 197Au nuclear quadrupole moment [+0.547(16)x10(-28) m2] for the 3/2+ nuclear ground state obtained by Powers et al. [Nucl. Phys. A230, 413 (1974)]. From both measured Mossbauer electric quadrupole splittings and solid-state density-functional calculations for a large number of gold compounds a nuclear quadrupole moment of +0.60x10(-28) m2 is obtained. Recent Fourier transform microwave measurements for gas-phase AuF, AuCl, AuBr, and AuI give accurate bond distances and nuclear quadrupole coupling constants for the 197Au isotope. However, four-component relativistic density-functional calculations for these molecules yield unreliable results for the 197Au nuclear quadrupole moment. Relativistic singles-doubles coupled cluster calculations including perturbative triples [CCSD(T) level of theory] for these diatomic systems are also inaccurate because of large cancellation effects between different field gradient contributions subsequently leading to very small field gradients. Here one needs very large basis sets and has to go beyond the standard CCSD(T) procedure to obtain any reliable field gradients for gold. From recent microwave experiments by Gerry and co-workers [Inorg. Chem. 40, 6123 (2001)] a significantly enhanced (197)Au nuclear quadrupole coupling constant in (CO)AuF compared to free AuF is observed. Here, these cancellation effects are less important, and relativistic CCSD(T) calculations finally give a nuclear quadrupole moment of +0.64x10(-28) m2 for 197Au. It is argued that it is currently very difficult to improve on the already published muonic value for the 197Au nuclear quadrupole moment.

Collaboration


Dive into the Radovan Bast's collaboration.

Top Co-Authors

Avatar

Trond Saue

Paul Sabatier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Gao

University of Tromsø

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge