Radovan Fišer
Charles University in Prague
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Radovan Fišer.
PLOS Pathogens | 2010
Ladislav Bumba; Jiri Masin; Radovan Fišer; Peter Sebo
Bordetella adenylate cyclase toxin (CyaA) binds the αMβ2 integrin (CD11b/CD18, Mac-1, or CR3) of myeloid phagocytes and delivers into their cytosol an adenylate cyclase (AC) enzyme that converts ATP into the key signaling molecule cAMP. We show that penetration of the AC domain across cell membrane proceeds in two steps. It starts by membrane insertion of a toxin ‘translocation intermediate’, which can be ‘locked’ in the membrane by the 3D1 antibody blocking AC domain translocation. Insertion of the ‘intermediate’ permeabilizes cells for influx of extracellular calcium ions and thus activates calpain-mediated cleavage of the talin tether. Recruitment of the integrin-CyaA complex into lipid rafts follows and the cholesterol-rich lipid environment promotes translocation of the AC domain across cell membrane. AC translocation into cells was inhibited upon raft disruption by cholesterol depletion, or when CyaA mobilization into rafts was blocked by inhibition of talin processing. Furthermore, CyaA mutants unable to mobilize calcium into cells failed to relocate into lipid rafts, and failed to translocate the AC domain across cell membrane, unless rescued by Ca2+ influx promoted in trans by ionomycin or another CyaA protein. Hence, by mobilizing calcium ions into phagocytes, the ‘translocation intermediate’ promotes toxin piggybacking on integrin into lipid rafts and enables AC enzyme delivery into host cytosol.
Journal of Biological Chemistry | 2007
Radovan Fišer; Jiri Masin; Marek Basler; Jan Krusek; Veronika Spulakova; Ivo Konopásek; Peter Sebo
The Bordetella adenylate cyclase toxin-hemolysin (CyaA) targets phagocytes expressing the αMβ2 integrin (CD11b/CD18), permeabilizes their membranes by forming small cation-selective pores, and delivers into cells a calmodulin-activated adenylate cyclase (AC) enzyme that dissipates cytosolic ATP into cAMP. We describe here a third activity of CyaA that yields elevation of cytosolic calcium concentration ([Ca2+]i) in target cells. The CyaA-mediated [Ca2+]i increase in CD11b+ J774A.1 monocytes was inhibited by extracellular La3+ ions but not by nifedipine, SK&F 96365, flunarizine, 2-aminoethyl diphenylborinate, or thapsigargin, suggesting that influx of Ca2+ into cells was not because of receptor signaling or opening of conventional calcium channels by cAMP. Compared with intact CyaA, a CyaA-AC– toxoid unable to generate cAMP promoted a faster, albeit transient, elevation of [Ca2+]i. This was not because of cell permeabilization by the CyaA hemolysin pores, because a mutant exhibiting a strongly enhanced pore-forming activity (CyaA-E509K/E516K), but unable to deliver the AC domain into cells, was also unable to elicit a [Ca2+]i increase. Further mutations interfering with AC translocation into cells, such as proline substitutions of glutamate residues 509 or 570 or deletion of the AC domain as such, reduced or ablated the [Ca2+]i-elevating capacity of CyaA. Moreover, structural alterations within the AC domain, because of insertion of various oligopeptides, differently modulated the kinetics and extent of Ca2+ influx elicited by the respective AC– toxoids. Hence, the translocating AC polypeptide itself appears to participate in formation of a novel type of membrane path for calcium ions, contributing to action of CyaA in an unexpected manner.
Journal of Biological Chemistry | 2007
Marek Basler; Oliver Knapp; Jiri Masin; Radovan Fišer; Elke Maier; Roland Benz; Peter Sebo; Radim Osicka
Bordetella adenylate cyclase toxin-hemolysin (CyaA, AC-Hly, or ACT) permeabilizes cell membranes by forming small cation-selective (hemolytic) pores and subverts cellular signaling by delivering into host cells an adenylate cyclase (AC) enzyme that converts ATP to cAMP. Both AC delivery and pore formation were previously shown to involve a predicted amphipathic α-helix502–522 containing a pair of negatively charged Glu509 and Glu516 residues. Another predicted transmembrane α-helix565–591 comprises a Glu570 and Glu581 pair. We examined the roles of these glutamates in the activity of CyaA. Substitutions of Glu516 increased specific hemolytic activity of CyaA by two different molecular mechanisms. Replacement of Glu516 by positively charged lysine residue (E516K) increased the propensity of CyaA to form pores, whereas proline (E516P) or glutamine (E516Q) substitutions extended the lifetime of open single pore units. All three substitutions also caused a drop of pore selectivity for cations. Substitutions of Glu570 and Glu581 by helix-breaking proline or positively charged lysine residue reduced (E570K, E581P) or ablated (E570P, E581K) AC membrane translocation. Moreover, E570P, E570K, and E581P substitutions down-modulated also the specific hemolytic activity of CyaA. In contrast, the E581K substitution enhanced the hemolytic activity of CyaA 4 times, increasing both the frequency of formation and lifetime of toxin pores. Negative charge at position 570, but not at position 581, was found to be essential for cation selectivity of the pore, suggesting a role of Glu570 in ion filtering inside or close to pore mouth. The pairs of glutamate residues in the predicted transmembrane segments of CyaA thus appear to play a key functional role in membrane translocation and pore-forming activities of CyaA.
PLOS Pathogens | 2012
Radovan Fišer; Jiri Masin; Ladislav Bumba; Eva Pospisilova; Catherine Fayolle; Marek Basler; Lenka Sadilkova; Irena Adkins; Jana Kamanova; Jan Cerny; Ivo Konopásek; Radim Osicka; Claude Leclerc; Peter Sebo
Bordetella adenylate cyclase toxin-hemolysin (CyaA) penetrates the cytoplasmic membrane of phagocytes and employs two distinct conformers to exert its multiple activities. One conformer forms cation-selective pores that permeabilize phagocyte membrane for efflux of cytosolic potassium. The other conformer conducts extracellular calcium ions across cytoplasmic membrane of cells, relocates into lipid rafts, translocates the adenylate cyclase enzyme (AC) domain into cells and converts cytosolic ATP to cAMP. We show that the calcium-conducting activity of CyaA controls the path and kinetics of endocytic removal of toxin pores from phagocyte membrane. The enzymatically inactive but calcium-conducting CyaA-AC− toxoid was endocytosed via a clathrin-dependent pathway. In contrast, a doubly mutated (E570K+E581P) toxoid, unable to conduct Ca2+ into cells, was rapidly internalized by membrane macropinocytosis, unless rescued by Ca2+ influx promoted in trans by ionomycin or intact toxoid. Moreover, a fully pore-forming CyaA-ΔAC hemolysin failed to permeabilize phagocytes, unless endocytic removal of its pores from cell membrane was decelerated through Ca2+ influx promoted by molecules locked in a Ca2+-conducting conformation by the 3D1 antibody. Inhibition of endocytosis also enabled the native B. pertussis-produced CyaA to induce lysis of J774A.1 macrophages at concentrations starting from 100 ng/ml. Hence, by mediating calcium influx into cells, the translocating conformer of CyaA controls the removal of bystander toxin pores from phagocyte membrane. This triggers a positive feedback loop of exacerbated cell permeabilization, where the efflux of cellular potassium yields further decreased toxin pore removal from cell membrane and this further enhances cell permeabilization and potassium efflux.
Journal of Applied Microbiology | 2012
G. Seydlová; Petr Halada; Radovan Fišer; O. Toman; A. Ulrych; Jaroslava Svobodová
Aims: To find out membrane tolerance strategy to ethanol in Bacillus subtilis that possesses a powerful system of protection against environmental stresses.
Infection and Immunity | 2013
Jiri Masin; Radovan Fišer; Irena Linhartova; Radim Osicka; Ladislav Bumba; Erik L. Hewlett; Roland Benz; Peter Sebo
ABSTRACT A large subgroup of the repeat in toxin (RTX) family of leukotoxins of Gram-negative pathogens consists of pore-forming hemolysins. These can permeabilize mammalian erythrocytes (RBCs) and provoke their colloid osmotic lysis (hemolytic activity). Recently, ATP leakage through pannexin channels and P2X receptor-mediated opening of cellular calcium and potassium channels were implicated in cell permeabilization by pore-forming toxins. In the study described here, we examined the role played by purinergic signaling in the cytolytic action of two RTX toxins that form pores of different sizes. The cytolytic potency of ApxIA hemolysin of Actinobacillus pleuropneumoniae, which forms pores about 2.4 nm wide, was clearly reduced in the presence of P2X7 receptor antagonists or an ATP scavenger, such as pyridoxalphosphate-6-azophenyl-2′,4′-disulfonic acid (PPADS), Brilliant Blue G, ATP oxidized sodium salt, or hexokinase. In contrast, antagonists of purinergic signaling had no impact on the hemolytic potency of the adenylate cyclase toxin-hemolysin (CyaA) of Bordetella pertussis, which forms pores of 0.6 to 0.8 nm in diameter. Moreover, the conductance of pores formed by ApxIA increased with the toxin concentration, while the conductance of the CyaA single pore units was constant at various toxin concentrations. However, the P2X7 receptor antagonist PPADS inhibited in a concentration-dependent manner the exacerbated hemolytic activity of a CyaA-ΔN489 construct (lacking 489 N-terminal residues of CyaA), which exhibited a strongly enhanced pore-forming propensity (>20-fold) and also formed severalfold larger conductance units in planar lipid bilayers than intact CyaA. These results point to a pore size threshold of purinergic amplification involvement in cell permeabilization by pore-forming RTX toxins.
Analytical Biochemistry | 2014
Tomas Wald; Inga Petry-Podgorska; Radovan Fišer; Tomáš Matoušek; Jiri Dedina; Radim Osicka; Peter Sebo; Jiri Masin
The aim of this study was to compare two methods for quantification of changes in intracellular potassium concentration (decrease from ∼140 to ∼20mM) due to the action of a pore-forming toxin, the adenylate cyclase toxin (CyaA) from the pathogenic bacterium Bordetella pertussis. CyaA was incubated with stably transfected K1 Chinese hamster ovary cells expressing the toxin receptor CD11b/CD18 and the decrease in potassium concentration in the cells was followed by inductively coupled plasma mass spectrometry (ICP-MS). It is shown that this method is superior in terms of sensitivity, accuracy, and temporal resolution over the method employing the potassium-binding benzofuran isophthalate-acetoxymethyl ester fluorescent indicator. The ICP-MS procedure was found to be a reliable and straightforward analytical approach enabling kinetic studies of CyaA action at physiologically relevant toxin concentrations (<1000ng/ml) in biological microsamples.
Chemical Research in Toxicology | 2012
Pavel Hrouzek; Marek Kuzma; Jan Černý; Petr Novák; Radovan Fišer; Petr Šimek; Alena Lukešová; Jiří Kopecký
Puwainaphycins F and G, moderate cytotoxins, which cause necrotic cell death to mammalian cells, were isolated from the soil cyanobacterium Cylindrospermum alatosporum C24/89. Both compounds have been shown to be cyclic decapeptides containing unusual β-amino fatty acid (2-hydroxy-3-amino-4methyl tetradecanoic acid). Described variants differ in the substitution of threonine by glutamine in the fourth position. Their structures differ from the known puwainaphycins in five amino acids positions as well as in the β-amino fatty acid unit. The rapid interaction of these compounds with the plasma membrane of the mammal cell leads to an elevation of the concentration of intracellular Ca(2+), with kinetics comparable to the well-established calcium ionophore ionomycin. Subsequently, the induction of tyrosine phosphorylation was observed to be followed by the unique transformation of the actin cytoskeleton into ring structures around the nuclei. All of these alterations in the cellular morphology and physiology result in necrotic cell death after ca. 10 h. The IC(50) values were determined to be 2.2 μM for both puwainaphycins. The present data demonstrate the interaction of cyanobacterial secondary metabolites with eukaryotic plasma membrane and point out the possible toxic effects of cyanobacterial lipopeptides for humans.
Macroeconomics and Finance in Emerging Market Economies | 2010
Roman Horvath; Radovan Fišer
We examine the effects of the Czech National Bank communication, macroeconomic news and interest rate differential on exchange rate volatility using generalized autoregressive conditional heteroscedasticity model. Our results suggest that central bank communication has a calming effect on exchange rate volatility. The timing of central bank communication seems to matter, too, as financial markets respond more to the communication before the policy meetings than after them. Next, macroeconomic news releases are found to reduce exchange rate volatility, while interest rate differential seems to increase it.
Scientific Reports | 2016
Jiri Masin; Adriana Osickova; Anna Sukova; Radovan Fišer; Petr Halada; Ladislav Bumba; Irena Linhartova; Radim Osicka; Peter Sebo
The whooping cough agent, Bordetella pertussis, secretes an adenylate cyclase toxin-hemolysin (CyaA) that plays a crucial role in host respiratory tract colonization. CyaA targets CR3-expressing cells and disrupts their bactericidal functions by delivering into their cytosol an adenylate cyclase enzyme that converts intracellular ATP to cAMP. In parallel, the hydrophobic domain of CyaA forms cation-selective pores that permeabilize cell membrane. The invasive AC and pore-forming domains of CyaA are linked by a segment that is unique in the RTX cytolysin family. We used mass spectrometry and circular dichroism to show that the linker segment forms α-helical structures that penetrate into lipid bilayer. Replacement of the positively charged arginine residues, proposed to be involved in target membrane destabilization by the linker segment, reduced the capacity of the toxin to translocate the AC domain across cell membrane. Substitutions of negatively charged residues then revealed that two clusters of negative charges within the linker segment control the size and the propensity of CyaA pore formation, thereby restricting the cell-permeabilizing capacity of CyaA. The ‘AC to Hly-linking segment’ thus appears to account for the smaller size and modest cell-permeabilizing capacity of CyaA pores, as compared to typical RTX hemolysins.