Radu V. Craiu
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Radu V. Craiu.
Journal of the American Statistical Association | 2009
Radu V. Craiu; Jeffrey S. Rosenthal; Chao Yang
Starting with the seminal paper of Haario, Saksman, and Tamminen (Haario, Saksman, and Tamminen 2001), a substantial amount of work has been done to validate adaptive Markov chain Monte Carlo algorithms. In this paper we focus on two practical aspects of adaptive Metropolis samplers. First, we draw attention to the deficient performance of standard adaptation when the target distribution is multimodal. We propose a parallel chain adaptation strategy that incorporates multiple Markov chains which are run in parallel. Second, we note that the current adaptive MCMC paradigm implicitly assumes that the adaptation is uniformly efficient on all regions of the state space. However, in many practical instances, different “optimal” kernels are needed in different regions of the state space. We propose here a regional adaptation algorithm in which we account for possible errors made in defining the adaptation regions. This corresponds to the more realistic case in which one does not know exactly the optimal regions for adaptation. The methods focus on the random walk Metropolis sampling algorithm but their scope is much wider. We provide theoretical justification for the two adaptive approaches using the existent theory build for adaptive Markov chain Monte Carlo. We illustrate the performance of the methods using simulations and analyze a mixture model for real data using an algorithm that combines the two approaches.
Biometrics | 2011
Elif F. Acar; Radu V. Craiu
The study of dependence between random variables is a mainstay in statistics. In many cases, the strength of dependence between two or more random variables varies according to the values of a measured covariate. We propose inference for this type of variation using a conditional copula model where the copula function belongs to a parametric copula family and the copula parameter varies with the covariate. In order to estimate the functional relationship between the copula parameter and the covariate, we propose a nonparametric approach based on local likelihood. Of importance is also the choice of the copula family that best represents a given set of data. The proposed framework naturally leads to a novel copula selection method based on cross-validated prediction errors. We derive the asymptotic bias and variance of the resulting local polynomial estimator, and outline how to construct pointwise confidence intervals. The finite-sample performance of our method is investigated using simulation studies and is illustrated using a subset of the Matched Multiple Birth data.
Statistics and Computing | 2007
Radu V. Craiu; Christiane Lemieux
The Multiple-Try Metropolis is a recent extension of the Metropolis algorithm in which the next state of the chain is selected among a set of proposals. We propose a modification of the Multiple-Try Metropolis algorithm which allows for the use of correlated proposals, particularly antithetic and stratified proposals. The method is particularly useful for random walk Metropolis in high dimensional spaces and can be used easily when the proposal distribution is Gaussian. We explore the use of quasi Monte Carlo (QMC) methods to generate highly stratified samples. A series of examples is presented to evaluate the potential of the method.
Annals of Statistics | 2005
Radu V. Craiu; Xiao-Li Meng
Antithetic coupling is a general stratification strategy for reducing Monte Carlo variance without increasing the simulation size. The use of the antithetic principle in the Monte Carlo literature typically employs two strata via antithetic quantile coupling. We demonstrate here that further stratification, obtained by using k > 2 (e.g., k = 3– 10) antithetically coupled variates, can offer substantial additional gain in Monte Carlo efficiency, in terms of both variance and bias. The reason for reduced bias is that antithetically coupled chains can provide a more dispersed search of the state space than multiple independent chains. The emerging area of perfect simulation provides a perfect setting for implementing the k-process parallel antithetic coupling for MCMC because, without antithetic coupling, this class of methods delivers genuine independent draws. Furthermore, antithetic backward coupling provides a very convenient theoretical tool for investigating antithetic forward coupling. However, the generation of k > 2 antithetic variates that are negatively associated, that is, they preserve negative correlation under monotone transformations, and extremely antithetic, that is, they are as negatively correlated as possible, is more complicated compared to the case with k = 2. In this paper, we establish a theoretical framework for investigating such issues. Among the generating methods that we compare, Latin hypercube sampling and its iterative extension appear to be generalpurpose choices, making another direct link between Monte Carlo and quasi Monte Carlo.
Statistics and Computing | 2013
Roberto Casarin; Radu V. Craiu; Fabrizio Leisen
We introduce a new class of interacting Markov chain Monte Carlo (MCMC) algorithms which is designed to increase the efficiency of a modified multiple-try Metropolis (MTM) sampler. The extension with respect to the existing MCMC literature is twofold. First, the sampler proposed extends the basic MTM algorithm by allowing for different proposal distributions in the multiple-try generation step. Second, we exploit the different proposal distributions to naturally introduce an interacting MTM mechanism (IMTM) that expands the class of population Monte Carlo methods and builds connections with the rapidly expanding world of adaptive MCMC. We show the validity of the algorithm and discuss the choice of the selection weights and of the different proposals. The numerical studies show that the interaction mechanism allows the IMTM to efficiently explore the state space leading to higher efficiency than other competing algorithms.
The Annals of Applied Statistics | 2011
Lizhen Xu; Radu V. Craiu; Lei Sun
Parameter estimates for associated genetic variants, report ed in the initial discovery samples, are often grossly inflated compared to the values observed in the follow-up replication samples. This type of bias is a consequence of the sequential procedure in which the estimated effect of an associated genetic marker must first pass a stringent significance threshold. We propose a hierarchical Bayes method in which a spike-and-slab prior is used to account for the possibility that the significant test result may be due to chance. We examine the robustness of the method using different priors corresponding to different degrees of confidence in the testing results and propose a Bayesian model averaging procedure to combine estimates produced by different models. The Bayesian estimators yield smaller variance compared to the conditional likelihood estimator and outperform the latter in studies with low power. We investigate the performance of the method with simulations and applications to four real data examples.
Technometrics | 2005
Radu V. Craiu; Thomas C. M. Lee
The competing-risks model is useful in settings in which individuals (or units) may die (or fail) because of various causes. It can also be the case that for some of the items, the cause of failure is known only up to a subgroup of all causes, in which case we say that the failure is group-masked. A widely used approach for competing-risks data with and without masking involves the specification of cause-specific hazard rates. Often, because of the availability of likelihood methods for estimation and testing, piecewise constant hazards are used. The piecewise constant rates also offer model flexibility and computational convenience. However, for such piecewise constant hazard models, the choice of the endpoints for each interval on which the hazards are constant is usually a subjective one. In this article we discuss and propose the use of model selection methods that are data-driven and automatic. We compare three model selection procedures based on the minimum description length principle, the Bayes information criterion, and the Akaike information criterion. A fast-splitting algorithm is the computational tool used to select among an enormous number of possible models. We test the effectiveness of the methods through numerical studies, including a real dataset with masked failure causes.
Journal of Computational and Graphical Statistics | 2011
Yan Bai; Radu V. Craiu; Antonio Fabio Di Narzo
The efficiency of Markov chain Monte Carlo (MCMC) algorithms can vary dramatically with the choice of simulation parameters. Adaptive MCMC (AMCMC) algorithms allow the automatic tuning of the parameters while the simulation is in progress. A multimodal target distribution may call for regional adaptation of Metropolis–Hastings samplers so that the proposal distribution varies across regions in the sample space. Establishing such a partition is not straightforward and, in many instances, the learning required for its specification takes place gradually, as the simulation proceeds. In the case in which the target distribution is approximated by a mixture of Gaussians, we propose an adaptation process for the partition. It involves fitting the mixture using the available samples via an online EM algorithm and, based on the current mixture parameters, constructing the regional adaptive algorithm with online recursion (RAPTOR). The method is compared with other regional AMCMC samplers and is tested on simulated as well as real data examples. Relevant theoretical proofs, code and datasets are posted as an online supplement.
Electronic Journal of Statistics | 2013
Elif F. Acar; Radu V. Craiu
Abstract: In conditional copula models, the copula parameter is deterministically linked to a covariate via the calibration function. The latter is of central interest for inference and is usually estimated nonparametrically. However, in many applications it is scientifically important to test whether the calibration function is constant or not. Moreover, a correct model of a constant relationship results in significant gains of statistical efficiency. We develop methodology for testing a parametric formulation of the calibration function against a general alternative and propose a generalized likelihood ratio-type test that enables conditional copula model diagnostics. We derive the asymptotic null distribution of the proposed test and study its finite sample performance using simulations. The method is applied to two data examples.
Journal of Computational and Graphical Statistics | 2011
Radu V. Craiu; Thierry Duchesne; Daniel Fortin; Sophie Baillargeon
The analysis of data generated by animal habitat selection studies, by family studies of genetic diseases, or by longitudinal follow-up of households often involves fitting a mixed conditional logistic regression model to longitudinal data composed of clusters of matched case-control strata. The estimation of model parameters by maximum likelihood is especially difficult when the number of cases per stratum is greater than one. In this case, the denominator of each cluster contribution to the conditional likelihood involves a complex integral in high dimension, which leads to convergence problems in the numerical maximization. In this article we show how these computational complexities can be bypassed using a global two-step analysis for nonlinear mixed effects models. The first step estimates the cluster-specific parameters and can be achieved with standard statistical methods and software based on maximum likelihood for independent data. The second step uses the EM-algorithm in conjunction with conditional restricted maximum likelihood to estimate the population parameters. We use simulations to demonstrate that the method works well when the analysis is based on a large number of strata per cluster, as in many ecological studies. We apply the proposed two-step approach to evaluate habitat selection by pairs of bison roaming freely in their natural environment. This article has supplementary material online.