Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rae Kwon Kim is active.

Publication


Featured researches published by Rae Kwon Kim.


Oncogene | 2013

Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells

Yongjoon Suh; Chang-Hwan Yoon; Rae Kwon Kim; Eun Jung Lim; Yeong Seok Oh; Sang Gu Hwang; Sungkwan An; Gyesoon Yoon; Myung Chan Gye; J. M. Yi; Mi Jeong Kim; Su Jae Lee

Claudins (CLDNs) are a family of integral membrane proteins central to the formation of tight junctions, structures that are involved in paracellular transport and cellular growth and differentiation, and are critical for the maintenance of cellular polarity. Recent studies have provided evidence that CLDNs are aberrantly expressed in diverse types of human cancers, including hepatocellular carcinomas (HCCs). However, little is known about how CLDN expression is involved in cancer progression. In this study, we show that CLDN1 has a causal role in the epithelial–mesenchymal transition (EMT) in human liver cells, and that the c-Abl-Ras-Raf-1-ERK1/2 signaling axis is critical for the induction of malignant progression by CLDN1. Overexpression of CLDN1 induced expression of the EMT-regulating transcription factors Slug and Zeb1, and thereby led to repression of E-cadherin, β-catenin expression, enhanced expression of N-cadherin and Vimentin, a loss of cell adhesion, and increased cell motility in normal liver cells and HCC cells. In line with these findings, inhibition of either c-Abl or ERK clearly attenuated CLDN1-induced EMT, as evidenced by a reversal of N-cadherin and E-cadherin expression patterns, and restored normal motility. Collectively, these results indicate that CLDN1 is necessary for the induction of EMT in human liver cells, and that activation of the c-Abl-Ras-Raf-1-ERK1/2 signaling pathway is required for CLDN1-induced acquisition of the malignant phenotype. The present observations suggest that CLDN1 could be exploited as a biomarker for liver cancer metastasis and might provide a pivotal point for therapeutic intervention in HCC.


Oncogene | 2012

C-Jun N-terminal kinase has a pivotal role in the maintenance of self-renewal and tumorigenicity in glioma stem-like cells

Chang-Hwan Yoon; Minjung Kim; Rae Kwon Kim; Eun Jung Lim; K. S. Choi; Sungkwan An; S. G. Hwang; Seok Gu Kang; Yongjoon Suh; Mina Park; Su Jae Lee

Uncovering the mechanisms that govern the maintenance of stem-like cancer cells is critical for developing therapeutic strategies for targeting these cells. Constitutive activation of c-Jun N-terminal kinase (JNK) has been reported in gliomas and correlates with histological grade. Here, we found that JNK signaling is crucial for the maintenance of ‘stemness’ in glioma cells. Sphere-cultured glioma cells showed more phosphorylation of JNK compared with serum-containing monolayer cultures. Importantly, blockade of JNK signaling with SP600125 or small interfering RNAs targeting JNK1 or JNK2 significantly reduced the CD133+/Nestin+ population and suppressed sphere formation, colony formation in soft agar, and expression of stem cell markers in sphere-cultured glioma cells. Intriguingly, sphere-cultured glioma cells exhibited enhanced expression of Notch-2, but not Notch-1, -3 or -4, and JNK inhibition almost completely abrogated this increase. Blocking the phosphoinoside 3-kinase (PI3K)/Akt pathway with LY294002 or si-Akt also suppressed the self-renewal of sphere-cultured glioma cells. PI3K, but not Akt, had a role as an upstream kinase in JNK1/2 activation. In addition, treatment with si-JNK greatly increased etoposide- and ionizing radiation (IR)-induced cell death in glioma spheres. Consistent with glioma cell lines, glioma stem-like cells isolated from primary patient glioma cells also had a higher activity of JNK and Notch-2 expression. Importantly, inhibition of JNK2 led to a decrease of Notch-2 expression and suppressed the CD133+/Nestin+ cell population in patient-derived primary glioma cells. Finally, downregulation of JNK2 almost completely suppressed intracranial tumor formation by glioma cells in nude mice. Taken together, these data demonstrate that JNK signaling is crucial for the maintenance of self-renewal and tumorigenicity of glioma stem-like cells and drug/IR resistance, and can be considered a promising target for eliminating stem-like cancer cells in gliomas.


Journal of Biological Chemistry | 2012

PTTG1 Oncogene Promotes Tumor Malignancy via Epithelial to Mesenchymal Transition and Expansion of Cancer Stem Cell Population

Chang-Hwan Yoon; Min Jung Kim; Hyejin Lee; Rae Kwon Kim; Eun Jung Lim; Ki Chun Yoo; Ga Haeng Lee; Yan Hong Cui; Yeong Seok Oh; Myung Chan Gye; Young Yiul Lee; In Chul Park; Sungkwan An; Sang Gu Hwang; Myung Jin Park; Yongjoon Suh; Su Jae Lee

Background: PTTG1 is an oncogene with its expression levels correlating with tumor development and metastasis. Results: Modulation of PTTG1 expression levels revealed that PTTG1 promotes invasive and migratory properties and expansion of CD44high CD24low cell population via AKT activation in breast cancer cells. Conclusion: PTTG1 induces EMT and promotes cancer stem cells via activation of AKT. Significance: PTTG1 represents a potential target for therapeutic intervention against the spread of breast cancer. The prognosis of breast cancer patients is related to the degree of metastasis. However, the mechanisms by which epithelial tumor cells escape from the primary tumor and colonize at a distant site are not entirely understood. Here, we analyzed expression levels of pituitary tumor-transforming gene-1 (PTTG1), a relatively uncharacterized oncoprotein, in patient-derived breast cancer tissues with corresponding normal breast tissues. We found that PTTG1 is highly expressed in breast cancer patients, compared with normal tissues. Also, PTTG1 expression levels were correlated with the degree of malignancy in breast cancer cell lines; the more migratory and invasive cancer cell lines MDA-MB-231 and BT549 displayed the higher expression levels of PTTG1 than the less migratory and invasive MCF7 and SK-BR3 and normal MCF10A cell lines. By modulating PTTG1 expression levels, we found that PTTG1 enhances the migratory and invasive properties of breast cancer cells by inducing epithelial to mesenchymal transition, as evidenced by altered morphology and epithelial/mesenchymal cell marker expression patterns and up-regulation of the transcription factor Snail. Notably, down-regulation of PTTG1 also suppressed cancer stem cell population in BT549 cells by decreasing self-renewing ability and tumorigenic capacity, accompanying decreasing CD44high CD24low cells and Sox2 expression. Up-regulation of PTTG1 had the opposite effects, increasing sphere-forming ability and Sox2 expression. Importantly, PTTG1-mediated malignant tumor properties were due, at least in part, to activation of AKT, known to be a key regulator of both EMT and stemness in cancer cells. Collectively, these results suggest that PTTG1 may represent a new therapeutic target for malignant breast cancer.


International Journal of Nanomedicine | 2012

Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation

Ki Chun Yoo; Chang-Hwan Yoon; Dongwook Kwon; Kyung Hwan Hyun; Soo Jung Woo; Rae Kwon Kim; Eun Jung Lim; Yongjoon Suh; Min Jung Kim; Tae Hyun Yoon; Su Jae Lee

Background Titanium dioxide (TiO2) has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO2 particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO2 has yet to be defined. Methods and results In this study, we demonstrated that combined treatment with TiO2 nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO2 nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO2P25–70) together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO2-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO2P25–70 and ultraviolet A irradiation. Conclusion These results indicate that sub-100 nm sized TiO2 treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein, Bax. Elucidating the molecular mechanisms by which nanosized particles induce activation of cell death signaling pathways would be critical for the development of prevention strategies to minimize the cytotoxicity of nanomaterials.


FEBS Letters | 2011

The small GTPase Rac1 is involved in the maintenance of stemness and malignancies in glioma stem-like cells

Chang-Hwan Yoon; Kyung Hwan Hyun; Rae Kwon Kim; Hyejin Lee; Eun Jung Lim; Hee Yong Chung; Sungkwan An; Myung Jin Park; Yongjoon Suh; Min Jung Kim; Su Jae Lee

A subpopulation of cancer cells with stem cell properties is responsible for tumor formation, maintenance, and malignant progression; however, the molecular mechanisms underlying the maintenance of cancer stem‐like cell properties have remained unclear. Here, we show that the Rho family GTPase Rac1 is involved in the glioma stem‐like cell (GSLC) maintenance and tumorigenicity in human glioma. The Rac1‐Pak signaling was markedly activated in GSLCs. Knockdown of Rac1 caused reduction of expression of GSLC markers, self‐renewal‐related proteins and neurosphere formation. Moreover, down‐regulation of Rac1 suppressed the migration, invasion, and malignant transformation in GSLCs. Furthermore, inhibition of Rac1 enhanced radiation sensitivity of GSLCs. These results indicate that the small GTPase Rac1 is involved in the maintenance of stemness and malignancies in GSLCs.


Cancer Science | 2013

Fractionated radiation-induced nitric oxide promotes expansion of glioma stem-like cells

Rae Kwon Kim; Yongjoon Suh; Yan Hong Cui; Eunji Hwang; Eun Jung Lim; Ki Chun Yoo; Ga Haeng Lee; Joo Mi Yi; Seok Gu Kang; Su Jae Lee

Glioblastoma remains an incurable brain disease due to the prevalence of its recurrence. Considerable evidence suggests that glioma stem‐like cells are responsible for glioma relapse after treatment, which commonly involves ionizing radiation. Here, we found that fractionated ionizing radiation (2 Gy/day for 3 days) induced glioma stem‐like cell expansion and resistance to anticancer treatment such as cisplatin (50 μM) or taxol (500 nM), or by ionizing radiation (10 Gy) in both glioma cell lines (U87, U373) and patient‐derived glioma cells. Of note, concomitant increase of nitric oxide production occurred with the radiation‐induced increase of the glioma stem‐like cell population through upregulation of inducible nitric oxide synthase (iNOS). In line with this observation, downregulation of iNOS effectively reduced the glioma stem‐like cell population and decreased resistance to anticancer treatment. Collectively, our results suggest that targeting iNOS in combination with ionizing radiation might increase the efficacy of radiotherapy for glioma treatment.


Journal of Cell Science | 2011

Importance of PKCδ signaling in fractionated-radiation-induced expansion of glioma-initiating cells and resistance to cancer treatment.

Min Jung Kim; Rae Kwon Kim; Chang-Hwan Yoon; Sungkwan An; Sang Gu Hwang; Yongjoon Suh; Myung Jin Park; Hee Young Chung; In Gyu Kim; Su Jae Lee

Brain tumors frequently recur or progress as focal masses after treatment with ionizing radiation. However, the mechanisms underlying the repopulation of tumor cells after radiation have remained unclear. In this study, we show that cellular signaling from Abelson murine leukemia viral oncogene homolog (Abl) to protein kinase Cδ (PKCδ) is crucial for fractionated-radiation-induced expansion of glioma-initiating cell populations and acquisition of resistance to anticancer treatments. Treatment of human glioma cells with fractionated radiation increased Abl and PKCδ activity, expanded the CD133-positive (CD133+) cell population that possesses tumor-initiating potential and induced expression of glioma stem cell markers and self-renewal-related proteins. Moreover, cells treated with fractionated radiation were resistant to anticancer treatments. Small interfering RNA (siRNA)-mediated knockdown of PKCδ expression blocked fractionated-radiation-induced CD133+ cell expansion and suppressed expression of glioma stem cell markers and self-renewal-related proteins. It also suppressed resistance of glioma cells to anticancer treatments. Similarly, knockdown of Abl led to a decrease in CD133+ cell populations and restored chemotherapeutic sensitivity. It also attenuated fractionated-radiation-induced PKCδ activation, suggesting that Abl acts upstream of PKCδ. Collectively, these data indicate that fractionated radiation induces an increase in the glioma-initiating cell population, decreases cellular sensitivity to cancer treatment and implicates activation of Abl–PKCδ signaling in both events. These findings provide insights that might prove pivotal in the context of ionising-radiation-based therapeutic interventions for brain tumors.


Toxicology and Applied Pharmacology | 2011

Eckol suppresses maintenance of stemness and malignancies in glioma stem-like cells

Kyung Hwan Hyun; Chang-Hwan Yoon; Rae Kwon Kim; Eun Jung Lim; Sungkwan An; Myung Jin Park; Jin Won Hyun; Yongjoon Suh; Min Jung Kim; Su Jae Lee

A subpopulation of cancer cells with stem cell properties is responsible for tumor maintenance and progression, and may contribute to resistance to anticancer treatments. Thus, compounds that target cancer stem-like cells could be usefully applied to destroy cancer. In this study, we investigated the effect of Eckol, a phlorotannin compound, on stemness and malignancies in glioma stem-like cells. To determine whether Eckol targets glioma stem-like cells, we examined whether Eckol treatment could change the expression levels of glioma stem-like cell markers and self-renewal-related proteins as well as the sphere forming ability, and the sensitivity to anticancer treatments. Alterations in the malignant properties of sphere-derived cells by Eckol were also investigated by soft-agar colony forming assay, by xenograft assay in nude mice, and by cell invasion assay. Treatment of sphere-forming glioma cells with Eckol effectively decreased the sphere formation as well as the CD133(+) cell population. Eckol treatment suppressed expression of the glioma stem-like cell markers and the self-renewal-related proteins without cell death. Moreover, treatment of glioma stem-like cells with Eckol significantly attenuated anchorage-independent growth on soft agar and tumor formation in xenograft mice. Importantly, Eckol treatment effectively reduced the resistance of glioma stem-like cells to ionizing radiation and temozolomide. Treatment of glioma stem-like cells with Eckol markedly blocked both phosphoinositide 3-kinase-Akt and Ras-Raf-1-Erk signaling pathways. These results indicate that the natural phlorotannin Eckol suppresses stemness and malignancies in glioma stem-like cells, and thereby makes glioma stem-like cells more sensitive to anticancer treatments, providing novel therapeutic strategies targeting specifically cancer stem-like cells.


Toxicology and Applied Pharmacology | 2015

Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

Rae Kwon Kim; Nizam Uddin; Jin Won Hyun; Chan-Gil Kim; Yongjoon Suh; Su Jae Lee

Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44(+) cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2 and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse.


Cancer Science | 2015

Persistent activation of STAT3 by PIM2‐driven positive feedback loop for epithelial‐mesenchymal transition in breast cancer

Nizam Uddin; Rae Kwon Kim; Ki Chun Yoo; Young H. Kim; Yan Hong Cui; In Gyu Kim; Yongjoon Suh; Su Jae Lee

Metastasis of breast cancer is promoted by epithelial–mesenchymal transition (EMT). Emerging evidence suggests that STAT3 is a critical signaling node in EMT and is constitutively activated in many carcinomas, including breast cancer. However, its signaling mechanisms underlying persistent activation of STAT3 associated with EMT remain obscure. Here, we report that PIM2 promotes activation of STAT3 through induction of cytokines. Activation of STAT3 caused an increase in PIM2 expression, implicating a positive feedback loop between PIM2 and STAT3. In agreement, targeting of either PIM2, STAT3 or PIM2‐dependent cytokines suppressed EMT‐associated migratory and invasive properties through inhibition of ZEB1. Taken together, our findings identify the signaling mechanisms underlying the persistent activation of STAT3 and the oncogenic role of PIM2 in EMT in breast cancer.

Collaboration


Dive into the Rae Kwon Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge