Raf Ponsaerts
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raf Ponsaerts.
BioEssays | 2009
Catheleyne D'hondt; Raf Ponsaerts; Humbert De Smedt; Geert Bultynck; Bernard Himpens
Intercellular communication (IC) is mediated by gap junctions (GJs) and hemichannels, which consist of proteins. This has been particularly well documented for the connexin (Cx) family. Initially, Cxs were thought to be the only proteins capable of GJ formation in vertebrates. About 10 years ago, however, a new GJ‐forming protein family related to invertebrate innexins (Inxs) was discovered in vertebrates, and named the pannexin (Panx) family. Panxs, which are structurally similar to Cxs, but evolutionarily distinct, have been shown to be co‐expressed with Cxs in vertebrates. Both protein families show distinct properties and have their own particular function. Identification of the mechanisms that control Panx channel gating is a major challenge for future work. In this review, we focus on the specific properties and role of Panxs in normal and pathological conditions.
Basic Research in Cardiology | 2013
Nan Wang; Elke De Vuyst; Raf Ponsaerts; Kerstin Boengler; Nicolás Palacios-Prado; Joris Wauman; Charles P. Lai; Marijke De Bock; Elke Decrock; Mélissa Bol; Mathieu Vinken; Vera Rogiers; Jan Tavernier; W. Howard Evans; Christian C. Naus; Feliksas F. Bukauskas; Karin R. Sipido; Gerd Heusch; Rainer Schulz; Geert Bultynck; Luc Leybaert
Connexin-43 (Cx43), a predominant cardiac connexin, forms gap junctions (GJs) that facilitate electrical cell–cell coupling and unapposed/nonjunctional hemichannels that provide a pathway for the exchange of ions and metabolites between cytoplasm and extracellular milieu. Uncontrolled opening of hemichannels in the plasma membrane may be deleterious for the myocardium and blocking hemichannels may confer cardioprotection by preventing ionic imbalance, cell swelling and loss of critical metabolites. Currently, all known hemichannel inhibitors also block GJ channels, thereby disturbing electrical cell–cell communication. Here we aimed to characterize a nonapeptide, called Gap19, derived from the cytoplasmic loop (CL) of Cx43 as a hemichannel blocker and examined its effect on hemichannel currents in cardiomyocytes and its influence in cardiac outcome after ischemia/reperfusion. We report that Gap 19 inhibits Cx43 hemichannels without blocking GJ channels or Cx40/pannexin-1 hemichannels. Hemichannel inhibition is due to the binding of Gap19 to the C-terminus (CT) thereby preventing intramolecular CT–CL interactions. The peptide inhibited Cx43 hemichannel unitary currents in both HeLa cells exogenously expressing Cx43 and acutely isolated pig ventricular cardiomyocytes. Treatment with Gap19 prevented metabolic inhibition-enhanced hemichannel openings, protected cardiomyocytes against volume overload and cell death following ischemia/reperfusion in vitro and modestly decreased the infarct size after myocardial ischemia/reperfusion in mice in vivo. We conclude that preventing Cx43 hemichannel opening with Gap19 confers limited protective effects against myocardial ischemia/reperfusion injury.
Cell Death & Differentiation | 2012
Giovanni Monaco; Elke Decrock; Haidar Akl; Raf Ponsaerts; Tim Vervliet; Tomas Luyten; M De Maeyer; Ludwig Missiaen; Clark W. Distelhorst; H De Smedt; J B Parys; Luc Leybaert; Geert Bultynck
Antiapoptotic B-cell lymphoma 2 (Bcl-2) targets the inositol 1,4,5-trisphosphate receptor (IP3R) via its BH4 domain, thereby suppressing IP3R Ca2+-flux properties and protecting against Ca2+-dependent apoptosis. Here, we directly compared IP3R inhibition by BH4-Bcl-2 and BH4-Bcl-Xl. In contrast to BH4-Bcl-2, BH4-Bcl-Xl neither bound the modulatory domain of IP3R nor inhibited IP3-induced Ca2+ release (IICR) in permeabilized and intact cells. We identified a critical residue in BH4-Bcl-2 (Lys17) not conserved in BH4-Bcl-Xl (Asp11). Changing Lys17 into Asp in BH4-Bcl-2 completely abolished its IP3R-binding and -inhibitory properties, whereas changing Asp11 into Lys in BH4-Bcl-Xl induced IP3R binding and inhibition. This difference in IP3R regulation between BH4-Bcl-2 and BH4-Bcl-Xl controls their antiapoptotic action. Although both BH4-Bcl-2 and BH4-Bcl-Xl had antiapoptotic activity, BH4-Bcl-2 was more potent than BH4-Bcl-Xl. The effect of BH4-Bcl-2, but not of BH4-Bcl-Xl, depended on its binding to IP3Rs. In agreement with the IP3R-binding properties, the antiapoptotic activity of BH4-Bcl-2 and BH4-Bcl-Xl was modulated by the Lys/Asp substitutions. Changing Lys17 into Asp in full-length Bcl-2 significantly decreased its binding to the IP3R, its ability to inhibit IICR and its protection against apoptotic stimuli. A single amino-acid difference between BH4-Bcl-2 and BH4-Bcl-Xl therefore underlies differential regulation of IP3Rs and Ca2+-driven apoptosis by these functional domains. Mutating this residue affects the function of Bcl-2 in Ca2+ signaling and apoptosis.
Autophagy | 2011
Jean-Paul Decuypere; Kirsten Welkenhuyzen; Tomas Luyten; Raf Ponsaerts; Michael Dewaele; Jordi Molgó; Patrizia Agostinis; Ludwig Missiaen; Humbert De Smedt; Jan B. Parys; Geert Bultynck
The role of intracellular Ca2+ signaling in starvation-induced autophagy remains unclear. Here, we examined Ca2+ dynamics during starvation-induced autophagy and the underlying molecular mechanisms. Tightly correlating with autophagy stimulation, we observed a remodeling of the Ca2+ signalosome. First, short periods of starvation (1 to 3 h) caused a prominent increase of the ER Ca2+-store content and enhanced agonist-induced Ca2+ release. The mechanism involved the upregulation of intralumenal ER Ca2+-binding proteins, calreticulin and Grp78/BiP, which increased the ER Ca2+-buffering capacity and reduced the ER Ca2+ leak. Second, starvation led to Ins(1,4,5)P3R sensitization. Immunoprecipitation experiments showed that during starvation Beclin 1, released from Bcl-2, first bound with increasing efficiency to Ins(1,4,5)P3Rs; after reaching a maximal binding after 3 h, binding, however, decreased again. The interaction site of Beclin 1 was determined to be present in the N-terminal Ins(1,4,5)P3-binding domain of the Ins(1,4,5)P3R. The starvation-induced Ins(1,4,5)P3R sensitization was abolished in cells treated with BECN1 siRNA, but not with ATG5 siRNA, pointing toward an essential role of Beclin 1 in this process. Moreover, recombinant Beclin 1 sensitized Ins(1,4,5)P3Rs in 45Ca2+-flux assays, indicating a direct regulation of Ins(1,4,5)P3R activity by Beclin 1. Finally, we found that Ins(1,4,5)P3R-mediated Ca2+ signaling was critical for starvation-induced autophagy stimulation, since the Ca2+ chelator BAPTA-AM as well as the Ins(1,4,5)P3R inhibitor xestospongin B abolished the increase in LC3 lipidation and GFP-LC3-puncta formation. Hence, our results indicate a tight and essential interrelation between intracellular Ca2+ signaling and autophagy stimulation as a proximal event in response to starvation.
Cellular Signalling | 2011
Catheleyne D'hondt; Raf Ponsaerts; Humbert De Smedt; Mathieu Vinken; Elke De Vuyst; Marijke De Bock; Nan Wang; Vera Rogiers; Luc Leybaert; Bernard Himpens; Geert Bultynck
The pannexin (Panx) family of proteins, which is co-expressed with connexins (Cxs) in vertebrates, was found to be a new GJ-forming protein family related to invertebrate innexins. During the past ten years, different studies showed that Panxs mainly form hemichannels in the plasma membrane and mediate paracrine signalling by providing a flux pathway for ions such as Ca²(+), for ATP and perhaps for other compounds, in response to physiological and pathological stimuli. Although the physiological role of Panxs as a hemichannel was questioned, there is increasing evidence that Panx play a role in vasodilatation, initiation of inflammatory responses, ischemic death of neurons, epilepsy and in tumor suppression. Moreover, it is intriguing that Panxs may also function at the endoplasmic reticulum (ER) as intracellular Ca²(+)-leak channel and may be involved in ER-related functions. Although the physiological significance and meaning of such Panx-regulated intracellular Ca²(+) leak requires further exploration, this functional property places Panx at the centre of many physiological and pathophysiological processes, given the fundamental role of intracellular Ca²(+) homeostasis and dynamics in a plethora of physiological processes. In this review, we therefore want to focus on Panx as channels at the plasma membrane and at the ER membranes with a particular emphasis on the potential implications of the latter in intracellular Ca²(+) signalling.
Biochimica et Biophysica Acta | 2011
Mathieu Vinken; Elke Decrock; Elke De Vuyst; Raf Ponsaerts; Catheleyne D'hondt; Geert Bultynck; Liesbeth Ceelen; Tamara Vanhaecke; Luc Leybaert; Vera Rogiers
It is nowadays well established that gap junctions are critical gatekeepers of cell proliferation, by controlling the intercellular exchange of essential growth regulators. In recent years, however, it has become clear that the picture is not as simple as originally anticipated, as structural precursors of gap junctions can affect cell cycling by performing actions not related to gap junctional intercellular communication. Indeed, connexin hemichannels also foresee a pathway for cell growth communication, albeit between the intracellular compartment and the extracellular environment, while connexin proteins as such can directly or indirectly influence the production of cell cycle regulators independently of their channel activities. Furthermore, a novel set of connexin-like proteins, the pannexins, have lately joined in as regulators of the cell proliferation process, which they can affect as either single units or as channel entities. In the current paper, these multifaceted aspects of connexin-related signalling in cell cycling are reviewed.
Journal of Biological Chemistry | 2012
Marijke De Bock; Nan Wang; Mélissa Bol; Elke Decrock; Raf Ponsaerts; Geert Bultynck; Geneviève Dupont; Luc Leybaert
Background: Connexin hemichannels are Ca2+-permeable plasma membrane channels that are controlled by [Ca2+]i; therefore, they may contribute to Ca2+ oscillations. Results: Ca2+ oscillations triggered by bradykinin in connexin-expressing cells were inhibited by blocking hemichannel opening or by preventing their closure at high [Ca2+]i; ATP-triggered oscillations were unaffected. Conclusion: Hemichannels contribute to oscillations by controlling Ca2+ entry. Significance: Hemichannels together with InsP3 receptors help shape agonist-induced Ca2+ oscillations. Many cellular functions are driven by changes in the intracellular Ca2+ concentration ([Ca2+]i) that are highly organized in time and space. Ca2+ oscillations are particularly important in this respect and are based on positive and negative [Ca2+]i feedback on inositol 1,4,5-trisphosphate receptors (InsP3Rs). Connexin hemichannels are Ca2+-permeable plasma membrane channels that are also controlled by [Ca2+]i. We aimed to investigate how hemichannels may contribute to Ca2+ oscillations. Madin-Darby canine kidney cells expressing connexin-32 (Cx32) and Cx43 were exposed to bradykinin (BK) or ATP to induce Ca2+ oscillations. BK-induced oscillations were rapidly (minutes) and reversibly inhibited by the connexin-mimetic peptides 32Gap27/43Gap26, whereas ATP-induced oscillations were unaffected. Furthermore, these peptides inhibited the BK-triggered release of calcein, a hemichannel-permeable dye. BK-induced oscillations, but not those induced by ATP, were dependent on extracellular Ca2+. Alleviating the negative feedback of [Ca2+]i on InsP3Rs using cytochrome c inhibited BK- and ATP-induced oscillations. Cx32 and Cx43 hemichannels are activated by <500 nm [Ca2+]i but inhibited by higher concentrations and CT9 peptide (last 9 amino acids of the Cx43 C terminus) removes this high [Ca2+]i inhibition. Unlike interfering with the bell-shaped dependence of InsP3Rs to [Ca2+]i, CT9 peptide prevented BK-induced oscillations but not those triggered by ATP. Collectively, these data indicate that connexin hemichannels contribute to BK-induced oscillations by allowing Ca2+ entry during the rising phase of the Ca2+ spikes and by providing an OFF mechanism during the falling phase of the spikes. Hemichannels were not sufficient to ignite oscillations by themselves; however, their contribution was crucial as hemichannel inhibition stopped the oscillations.
Investigative Ophthalmology & Visual Science | 2008
Raf Ponsaerts; Catheleyne D'hondt; Geert Bultynck; Sangly P. Srinivas; Johan Vereecke; Bernard Himpens
PURPOSE Thrombin inhibits intercellular Ca(2+) wave propagation in bovine corneal endothelial cells (BCECs) through a mechanism dependent on myosin light chain (MLC) phosphorylation. In this study, blebbistatin, a selective myosin II ATPase inhibitor, was used to investigate whether the effect of thrombin is mediated by enhanced actomyosin contractility. METHODS BCECs were exposed to thrombin (2 U/mL) for 5 minutes. MLC phosphorylation was assayed by immunocytochemistry. Ca(2+) waves were visualized by confocal microscopy with Fluo-4AM. Fluorescence recovery after photobleaching (FRAP) was used to investigate intercellular communication (IC) via gap junctions. ATP release was measured by luciferin-luciferase assay. Lucifer yellow (LY) uptake was used to investigate hemichannel activity, and Fura-2 was used to assay thrombin- and ATP-mediated Ca(2+) responses. RESULTS Pretreatment with blebbistatin (5 microM for 20 minutes) or its nitro derivative prevented the thrombin-induced inhibition of the Ca(2+) wave. Neither photo-inactivated blebbistatin nor the inactive enantiomers prevented the thrombin effect. Blebbistatin also prevented thrombin-induced inhibition of LY uptake, ATP release and FRAP, indicating that it prevented the thrombin effect on paracrine and gap junctional IC. In the absence of thrombin, blebbistatin had no significant effect on paracrine or gap junctional IC. The drug had no influence on MLC phosphorylation or on [Ca(2+)](i) transients in response to thrombin or ATP. CONCLUSIONS Blebbistatin prevents the inhibitory effects of thrombin on intercellular Ca(2+) wave propagation. The findings demonstrate that myosin II-mediated actomyosin contractility plays a central role in thrombin-induced inhibition of gap junctional IC and of hemichannel-mediated paracrine IC.
Biology of the Cell | 2012
Raf Ponsaerts; Nan Wang; Bernard Himpens; Luc Leybaert; Geert Bultynck
The molecular mechanisms underlying the regulation of gap junction (GJ) channels based on the 43‐kDa connexin isoform (Cx43) have been studied extensively. GJ channels are formed by the docking of opposed hemichannels in adjacent cells. Mounting data indicate that unopposed Cx43 hemichannels are also functional in the plasma membrane. However, our understanding of how Cx43‐hemichannel opening and closing is regulated at the molecular level is only poorly understood. Recent work elucidated that actomyosin contractility inhibits potently Cx43 hemichannels. It is known that intracellular Ca2+ exerts a bell‐shaped‐dependent effect on Cx43‐hemichannel opening. While low‐intracellular [Ca2+] (<500 nM) provokes opening of the channel, high‐intracellular [Ca2+] (> 500 nM) favours closing of the channel. The mechanism underlying this negative regulation of Cx43‐hemichannel activity by high‐intracellular [Ca2+] seems to be dependent on the activation of the actomyosin contractile system. The activity of Cx43 hemichannels is critically controlled by molecular interactions between the intracellular loop and the C‐terminal tail. These interactions are essential for Cx43‐hemichannel opening in response to triggers such as cytosolic [Ca2+] rise or external [Ca2+] lowering. In this review, we present the hypothesis that the actomyosin contractile system can function as an important brake mechanism on Cx43‐hemichannel opening. By controlling loop–tail interactions, the contractile system would prevent aberrant or excessive opening of Cx43 hemichannels.
PLOS ONE | 2012
Raf Ponsaerts; Catheleyne D’hondt; Fréderic Hertens; Jan B. Parys; Luc Leybaert; Johan Vereecke; Bernard Himpens; Geert Bultynck
ATP-dependent paracrine signaling, mediated via the release of ATP through plasma membrane-embedded hemichannels of the connexin family, coordinates a synchronized response between neighboring cells. Connexin 43 (Cx43) hemichannels that are present in the plasma membrane need to be tightly regulated to ensure cell viability. In monolayers of bovine corneal endothelial cells (BCEC),Cx43-mediated ATP release is strongly inhibited when the cells are treated with inflammatory mediators, in particular thrombin and histamine. In this study we investigated the involvement of RhoA activation in the inhibition of hemichannel-mediated ATP release in BCEC. We found that RhoA activation occurs rapidly and transiently upon thrombin treatment of BCEC. The RhoA activity correlated with the onset of actomyosin contractility that is involved in the inhibition of Cx43 hemichannels. RhoA activation and inhibition of Cx43-hemichannel activity were both prevented by pre-treatment of the cells with C3-toxin as well as knock down of RhoA by siRNA. These findings provide evidence that RhoA activation is a key player in thrombin-induced inhibition of Cx43-hemichannel activity. This study demonstrates that RhoA GTPase activity is involved in the acute inhibition of ATP-dependent paracrine signaling, mediated by Cx43 hemichannels, in response to the inflammatory mediator thrombin. Therefore, RhoA appears to be an important molecular switch that controls Cx43 hemichannel openings and hemichannel-mediated ATP-dependent paracrine intercellular communication under (patho)physiological conditions of stress.