Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rafael A. Medina is active.

Publication


Featured researches published by Rafael A. Medina.


Nature Reviews Microbiology | 2011

Influenza A viruses: new research developments

Rafael A. Medina; Adolfo García-Sastre

Influenza A viruses are zoonotic pathogens that continuously circulate and change in several animal hosts, including birds, pigs, horses and humans. The emergence of novel virus strains that are capable of causing human epidemics or pandemics is a serious possibility. Here, we discuss the value of surveillance and characterization of naturally occurring influenza viruses, and review the impact that new developments in the laboratory have had on our understanding of the host tropism and virulence of viruses. We also revise the lessons that have been learnt from the pandemic viruses of the past 100 years.


PLOS Pathogens | 2010

Protection of Mice against Lethal Challenge with 2009 H1N1 Influenza A Virus by 1918-Like and Classical Swine H1N1 Based Vaccines

Balaji Manicassamy; Rafael A. Medina; Rong Hai; Tshidi Tsibane; Silke Stertz; Estanislao Nistal-Villán; Peter Palese; Christopher F. Basler; Adolfo García-Sastre

The recent 2009 pandemic H1N1 virus infection in humans has resulted in nearly 5,000 deaths worldwide. Early epidemiological findings indicated a low level of infection in the older population (>65 years) with the pandemic virus, and a greater susceptibility in people younger than 35 years of age, a phenomenon correlated with the presence of cross-reactive immunity in the older population. It is unclear what virus(es) might be responsible for this apparent cross-protection against the 2009 pandemic H1N1 virus. We describe a mouse lethal challenge model for the 2009 pandemic H1N1 strain, used together with a panel of inactivated H1N1 virus vaccines and hemagglutinin (HA) monoclonal antibodies to dissect the possible humoral antigenic determinants of pre-existing immunity against this virus in the human population. By hemagglutinination inhibition (HI) assays and vaccination/challenge studies, we demonstrate that the 2009 pandemic H1N1 virus is antigenically similar to human H1N1 viruses that circulated from 1918–1943 and to classical swine H1N1 viruses. Antibodies elicited against 1918-like or classical swine H1N1 vaccines completely protect C57B/6 mice from lethal challenge with the influenza A/Netherlands/602/2009 virus isolate. In contrast, contemporary H1N1 vaccines afforded only partial protection. Passive immunization with cross-reactive monoclonal antibodies (mAbs) raised against either 1918 or A/California/04/2009 HA proteins offered full protection from death. Analysis of mAb antibody escape mutants, generated by selection of 2009 H1N1 virus with these mAbs, indicate that antigenic site Sa is one of the conserved cross-protective epitopes. Our findings in mice agree with serological data showing high prevalence of 2009 H1N1 cross-reactive antibodies only in the older population, indicating that prior infection with 1918-like viruses or vaccination against the 1976 swine H1N1 virus in the USA are likely to provide protection against the 2009 pandemic H1N1 virus. This data provides a mechanistic basis for the protection seen in the older population, and emphasizes a rationale for including vaccination of the younger, naïve population. Our results also support the notion that pigs can act as an animal reservoir where influenza virus HAs become antigenically frozen for long periods of time, facilitating the generation of human pandemic viruses.


Journal of Virology | 2010

Inefficient Control of Host Gene Expression by the 2009 Pandemic H1N1 Influenza A Virus NS1 Protein

Benjamin G. Hale; John Steel; Rafael A. Medina; Balaji Manicassamy; Jianqiang Ye; Danielle Hickman; Rong Hai; Mirco Schmolke; Anice C. Lowen; Daniel R. Perez; Adolfo García-Sastre

ABSTRACT In 2009, a novel swine-origin H1N1 influenza A virus emerged. Here, we characterize the multifunctional NS1 protein of this human pandemic virus in order to understand factors that may contribute to replication efficiency or pathogenicity. Although the 2009 H1N1 virus NS1 protein (2009/NS1) is an effective interferon antagonist, we found that this NS1 (unlike those of previous human-adapted influenza A viruses) is unable to block general host gene expression in human or swine cells. This property could be restored in 2009/NS1 by replacing R108, E125, and G189 with residues corresponding to human virus consensus. Mechanistically, these previously undescribed mutations acted by increasing binding of 2009/NS1 to the cellular pre-mRNA processing protein CPSF30. A recombinant 2009 H1N1 influenza A virus (A/California/04/09) expressing NS1 with these gain-of-function substitutions was more efficient than the wild type at antagonizing host innate immune responses in primary human epithelial cells. However, such mutations had no significant effect on virus replication in either human or swine tissue culture substrates. Surprisingly, in a mouse model of pathogenicity, the mutant virus appeared to cause less morbidity, and was cleared faster, than the wild type. The mutant virus also demonstrated reduced titers in the upper respiratory tracts of ferrets; however, contact and aerosol transmissibility of the virus was unaffected. Our data highlight a potential human adaptation of NS1 that seems absent in “classically derived” swine-origin influenza A viruses, including the 2009 H1N1 virus. We discuss the impact that a natural future gain of this NS1 function may have on the new pandemic virus in humans.


Journal of Virology | 2010

Oseltamivir-Resistant Variants of the 2009 Pandemic H1N1 Influenza A Virus Are Not Attenuated in the Guinea Pig and Ferret Transmission Models

Christopher W. Seibert; Michael M. Kaminski; Jennifer Philipp; Dennis Rubbenstroth; Randy A. Albrecht; Folker Schwalm; Silke Stertz; Rafael A. Medina; Georg Kochs; Adolfo García-Sastre; Peter Staeheli; Peter Palese

ABSTRACT Oseltamivir is routinely used worldwide for the treatment of severe influenza A virus infection, and should drug-resistant pandemic 2009 H1N1 viruses become widespread, this potent defense strategy might fail. Oseltamivir-resistant variants of the pandemic 2009 H1N1 influenza A virus have been detected in a substantial number of patients, but to date, the mutant viruses have not moved into circulation in the general population. It is not known whether the resistance mutations in viral neuraminidase (NA) reduce viral fitness. We addressed this question by studying transmission of oseltamivir-resistant mutants derived from two different isolates of the pandemic H1N1 virus in both the guinea pig and ferret transmission models. In vitro, the virus readily acquired a single histidine-to-tyrosine mutation at position 275 (H275Y) in viral neuraminidase when serially passaged in cell culture with increasing concentrations of oseltamivir. This mutation conferred a high degree of resistance to oseltamivir but not zanamivir. Unexpectedly, in guinea pigs and ferrets, the fitness of viruses with the H275Y point mutation was not detectably impaired, and both wild-type and mutant viruses were transmitted equally well from animals that were initially inoculated with 1:1 virus mixtures to naïve contacts. In contrast, a reassortant virus containing an oseltamivir-resistant seasonal NA in the pandemic H1N1 background showed decreased transmission efficiency and fitness in the guinea pig model. Our data suggest that the currently circulating pandemic 2009 H1N1 virus has a high potential to acquire drug resistance without losing fitness.


PLOS Pathogens | 2010

Variations in the Hemagglutinin of the 2009 H1N1 Pandemic Virus: Potential for Strains with Altered Virulence Phenotype?

Jianqiang Ye; Erin M. Sorrell; Yibin Cai; Hongxia Shao; Kemin Xu; Lindomar Pena; Danielle Hickman; Haichen Song; Matthew Angel; Rafael A. Medina; Balaji Manicassamy; Adolfo García-Sastre; Daniel R. Perez

A novel, swine-origin influenza H1N1 virus (H1N1pdm) caused the first pandemic of the 21st century. This pandemic, although efficient in transmission, is mild in virulence. This atypical mild pandemic season has raised concerns regarding the potential of this virus to acquire additional virulence markers either through further adaptation or possibly by immune pressure in the human host. Using the mouse model we generated, within a single round of infection with A/California/04/09/H1N1 (Ca/04), a virus lethal in mice—herein referred to as mouse-adapted Ca/04 (ma-Ca/04). Five amino acid substitutions were found in the genome of ma-Ca/04: 3 in HA (D131E, S186P and A198E), 1 in PA (E298K) and 1 in NP (D101G). Reverse genetics analyses of these mutations indicate that all five mutations from ma-Ca/04 contributed to the lethal phenotype; however, the D131E and S186P mutations—which are also found in the 1918 and seasonal H1N1 viruses—in HA alone were sufficient to confer virulence of Ca/04 in mice. HI assays against H1N1pdm demonstrate that the D131E and S186P mutations caused minor antigenic changes and, likely, affected receptor binding. The rapid selection of ma-Ca/04 in mice suggests that a virus containing this constellation of amino acids might have already been present in Ca/04, likely as minor quasispecies.


Nature Communications | 2010

Pandemic 2009 H1N1 vaccine protects against 1918 Spanish influenza virus

Rafael A. Medina; Balaji Manicassamy; Silke Stertz; Christopher W. Seibert; Rong Hai; Robert B. Belshe; Sharon E. Frey; Christopher F. Basler; Peter Palese; Adolfo García-Sastre

The 1918 influenza A virus caused the most devastating pandemic, killing approximately 50 million people worldwide. Immunization with 1918-like and classical swine H1N1 virus vaccines results in cross-protective antibodies against the 2009 H1N1 pandemic influenza, indicating antigenic similarities among these viruses. In this study, we demonstrate that vaccination with the 2009 pandemic H1N1 vaccine elicits 1918 virus cross-protective antibodies in mice and humans, and that vaccination or passive transfer of human-positive sera reduced morbidity and conferred full protection from lethal challenge with the 1918 virus in mice. The spread of the 2009 H1N1 influenza virus in the population worldwide, in addition to the large number of individuals already vaccinated, suggests that a large proportion of the population now have cross-protective antibodies against the 1918 virus, greatly alleviating concerns and fears regarding the accidental exposure/release of the 1918 virus from the laboratory and the use of the virus as a bioterrorist agent.


Journal of General Virology | 2010

Mutations in the NS1 C-terminal tail do not enhance replication or virulence of the 2009 pandemic H1N1 influenza A virus.

Benjamin G. Hale; John Steel; Balaji Manicassamy; Rafael A. Medina; Jianqiang Ye; Danielle Hickman; Anice C. Lowen; Daniel R. Perez; Adolfo García-Sastre

The ‘classical’ swine H1N1 influenza A virus lineage was established after the devastating 1918 human pandemic virus entered domestic pig herds. A descendent of this lineage recently re-emerged in humans as the 2009 pandemic H1N1 virus. Adaptation in pigs has led to several changes in the multifunctional viral NS1 protein as compared with the parental 1918 virus, most notably a K217E substitution that abolishes binding to host Crk/CrkL signalling adapters, and an 11 aa C-terminal truncation. Using reverse genetics, we reintroduced both these features into a prototype 2009 H1N1 strain, A/California/04/09. Restoration of Crk/CrkL binding or extension of NS1 to 230 aa had no impact on virus replication in human or swine cells. In addition, minimal effects on replication, pathogenicity and transmission were observed in mouse and ferret models. Our data suggest that the currently circulating 2009 H1N1 virus is optimized to replicate efficiently without requiring certain NS1 functions.


Journal of Virology | 2009

Ecology, Genetic Diversity, and Phylogeographic Structure of Andes Virus in Humans and Rodents in Chile

Rafael A. Medina; Fernando Torres-Pérez; Héctor Galeno; Maritza Navarrete; Pablo A. Vial; R. Eduardo Palma; Marcela Ferrés; Joseph A. Cook; Brian Hjelle

ABSTRACT Andes virus (ANDV) is the predominant etiologic agent of hantavirus cardiopulmonary syndrome (HCPS) in southern South America. In Chile, serologically confirmed human hantavirus infections have occurred throughout a wide latitudinal distribution extending from the regions of Valparaíso (32 to 33°S) to Aysén (46°S) in southern Patagonia. In this study, we found seropositive rodents further north in the Coquimbo region (30°S) in Chile. Rodent seroprevalence was 1.4%, with Oligoryzomys longicaudatus displaying the highest seroprevalence (5.9%), followed by Abrothrix longipilis (1.9%) and other species exhibiting ≤0.6% seropositivity. We sequenced partial ANDV small (S) segment RNA from 6 HCPS patients and 32 rodents of four different species collected throughout the known range of hantavirus infection in Chile. Phylogenetic analyses showed two major ANDV South (ANDV Sout) clades, congruent with two major Chilean ecoregions, Mediterranean (Chilean matorral [shrubland]) and Valdivian temperate forest. Human and rodent samples grouped according to geographic location. Phylogenetic comparative analyses of portions of S and medium segments (encoding glycoproteins Gn and Gc) from a subset of rodent specimens exhibited similar topologies, corroborating two major ANDV Sout clades in Chile and suggesting that yet unknown factors influence viral gene flow and persistence throughout the two Chilean ecoregions. Genetic algorithms for recombination detection identified recombination events within the S segment. Molecular demographic analyses showed that the virus is undergoing purifying selection and demonstrated a recent exponential growth in the effective number of ANDV Sout infections in Chile that correlates with the increased number of human cases reported. Although we determined virus sequences from four rodent species, our results confirmed O. longicaudatus as the primary ANDV Sout reservoir in Chile. While evidence of geographic differentiation exists, a single cosmopolitan lineage of ANDV Sout remains the sole etiologic agent for HCPS in Chile.


Science Translational Medicine | 2013

Glycosylations in the Globular Head of the Hemagglutinin Protein Modulate the Virulence and Antigenic Properties of the H1N1 Influenza Viruses

Rafael A. Medina; Silke Stertz; Balaji Manicassamy; Petra Zimmermann; Xiangjie Sun; Randy A. Albrecht; Hanni Uusi-Kerttula; Osvaldo Zagordi; Robert B. Belshe; Sharon E. Frey; Terrence M. Tumpey; Adolfo García-Sastre

Hemagglutinin glycosylations modulate the virulence and antigenicity of H1N1 influenza viruses. Hitting Flu Head-On Viruses and the immune system are engaged in a battle royale—each constantly trying to upstage the other. One way that flu viruses try to combat the immune response is through a series of mutations—known as antigenic drift. One such type of mutation is the introduction of a glycosylation site on the antigenic globular head of influenza hemagglutinin (HA) proteins. Glycosylation is thought to shield regions from targeting antibodies, but it has remained unclear how exactly HA glycosylation affects the virus–immune system interaction. Now, Medina et al. report that glycosylation not only affected influenza virus pathogenicity and allowed escape from polyclonal antibodies elicited by previous influenza virus strains but also affected their ability to induce cross-reactive antibodies against drifted antigenic variants. The authors introduced glycosylations onto the HA head of pandemic 2009 H1N1 influenza in a manner reflecting the timing of their appearance in previous seasonal viral drifted strains. They found that glycosylations could protect a strain from preexisting immunity against a wild-type version of the virus. However, previous infection with viruses glycosylated at particular residues led to protection against both glycosylated and wild-type viruses, as well as elicited cross-reactive immunity against other influenza viruses containing multiple glycosylations. These data suggest that altering glycosylations could be a potential strategy to improve upon the flu vaccine. With the global spread of the 2009 pandemic H1N1 (pH1N1) influenza virus, there are increasing worries about evolution through antigenic drift. One way previous seasonal H1N1 and H3N2 influenza strains have evolved over time is by acquiring additional glycosylations in the globular head of their hemagglutinin (HA) proteins; these glycosylations have been believed to shield antigenically relevant regions from antibody immune responses. We added additional HA glycosylation sites to influenza A/Netherlands/602/2009 recombinant (rpH1N1) viruses, reflecting their temporal appearance in previous seasonal H1N1 viruses. Additional glycosylations resulted in substantially attenuated infection in mice and ferrets, whereas deleting HA glycosylation sites from a pre-pandemic virus resulted in increased pathogenicity in mice. We then more directly investigated the interactions of HA glycosylations and antibody responses through mutational analysis. We found that the polyclonal antibody response elicited by wild-type rpH1N1 HA was likely directed against an immunodominant region, which could be shielded by glycosylation at position 144. However, rpH1N1 HA glycosylated at position 144 elicited a broader polyclonal response able to cross-neutralize all wild-type and glycosylation mutant pH1N1 viruses. Moreover, mice infected with a recent seasonal virus in which glycosylation sites were removed elicited antibodies that protected against challenge with the antigenically distant pH1N1 virus. Thus, acquisition of glycosylation sites in the HA of H1N1 human influenza viruses affected not only their pathogenicity and ability to escape from polyclonal antibodies elicited by previous influenza virus strains but also their ability to induce cross-reactive antibodies against drifted antigenic variants.


PLOS ONE | 2013

Pandemic H1N1 Influenza Isolated from Free-Ranging Northern Elephant Seals in 2010 off the Central California Coast

Tracey Goldstein; Ignacio Mena; Simon J. Anthony; Rafael A. Medina; Patrick W. Robinson; Denise J. Greig; Daniel P. Costa; W. Ian Lipkin; Adolfo García-Sastre; Walter M. Boyce

Interspecies transmission of influenza A is an important factor in the evolution and ecology of influenza viruses. Marine mammals are in contact with a number of influenza reservoirs, including aquatic birds and humans, and this may facilitate transmission among avian and mammalian hosts. Virus isolation, whole genome sequencing, and hemagluttination inhibition assay confirmed that exposure to pandemic H1N1 influenza virus occurred among free-ranging Northern Elephant Seals (Mirounga angustirostris) in 2010. Nasal swabs were collected from 42 adult female seals in April 2010, just after the animals had returned to the central California coast from their short post-breeding migration in the northeast Pacific. Swabs from two seals tested positive by RT-PCR for the matrix gene, and virus was isolated from each by inoculation into embryonic chicken eggs. Whole genome sequencing revealed greater than 99% homology with A/California/04/2009 (H1N1) that emerged in humans from swine in 2009. Analysis of more than 300 serum samples showed that samples collected early in 2010 (n = 100) were negative and by April animals began to test positive for antibodies against the pH1N1 virus (HI titer of ≥1∶40), supporting the molecular findings. In vitro characterizations studies revealed that viral replication was indistinguishable from that of reference strains of pH1N1 in canine kidney cells, but replication was inefficient in human epithelial respiratory cells, indicating these isolates may be elephant seal adapted viruses. Thus findings confirmed that exposure to pandemic H1N1 that was circulating in people in 2009 occurred among free-ranging Northern Elephant Seals in 2010 off the central California coast. This is the first report of pH1N1 (A/Elephant seal/California/1/2010) in any marine mammal and provides evidence for cross species transmission of influenza viruses in free-ranging wildlife and movement of influenza viruses between humans and wildlife.

Collaboration


Dive into the Rafael A. Medina's collaboration.

Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian Hjelle

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Palese

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Marcela Ferrés

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge