Rafael A. Porto
Carnegie Mellon University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rafael A. Porto.
Physical Review D | 2006
Rafael A. Porto
In this paper we include spin and multipole moment effects in the formalism used to describe the motion of extended objects recently introduced in hep-th/0409156. A suitable description for spinning bodies is developed and spin-orbit, spin-spin and quadrupole-spin Hamiltonians are found at leading order. The existence of tidal, as well as self induced finite size effects is shown, and the contribution to the Hamiltonian is calculated in the latter. It is shown that tidal deformations start formally at O(v^6) and O(v^10) for maximally rotating general and compact objects respectively, whereas self induced effects can show up at leading order. Agreement is found for the cases where the results are known.
Physical Review Letters | 2006
Rafael A. Porto; Ira Z. Rothstein
We use recently developed effective field theory techniques to calculate the third order post-Newtonian correction to the spin-spin potential between two spinning objects. This correction represents the first contribution to the spin-spin interaction due to the non-linear nature of general relativity and will play an important role in forthcoming gravity wave experiments.
Physical Review Letters | 2004
Rodolfo Gambini; Rafael A. Porto; Jorge Pullin
Ordinary quantum mechanics is formulated on the basis of the existence of an ideal classical clock external to the system under study. This is clearly an idealization. As emphasized originally by Salecker and Wigner and more recently by others, there exist limits in nature to how classical even the best possible clock can be. With realistic clocks, quantum mechanics ceases to be unitary and a fundamental mechanism of decoherence of quantum states arises. We estimate the rate of the universal loss of unitarity using optimal realistic clocks. In particular, we observe that the rate is rapid enough to eliminate the black hole information puzzle: all information is lost through the fundamental decoherence before the black hole can evaporate. This improves on a previous calculation we presented with a suboptimal clock in which only part of the information was lost by the time of evaporation.
New Journal of Physics | 2004
Rodolfo Gambini; Rafael A. Porto; Jorge Pullin
The use of a relational time in quantum mechanics is a framework in which one promotes to quantum operators all variables in a system, and later chooses one of the variables to operate like a clock. Conditional probabilities are computed for variables of the system to take certain values when the clock specifies a certain time. This framework is attractive in contexts where the assumption of usual quantum mechanics of the existence of an external, perfectly classical clock, appears unnatural, as in quantum cosmology. Until recently, there were problems with such constructions in ordinary quantum mechanics with additional difficulties in the context of constrained theories like general relativity. A scheme we recently introduced to consistently discretize general relativity removed such obstacles. Since the clock is now an object subject to quantum fluctuations, the resulting evolution in time is not exactly unitary and pure states decohere into mixed states. Here we work out in detail the type of decoherence generated, and we find it to be of Lindblad type. This is attractive since it implies that one can have loss of coherence without violating the conservation of energy. We apply the framework to a simple cosmological model to illustrate how a quantitative estimate of the effect could be computed. For most quantum systems it appears to be too small to be observed, although certain macroscopic quantum systems could in the future provide a testing ground for experimental observation.
General Relativity and Gravitation | 2007
Rodolfo Gambini; Rafael A. Porto; Jorge Pullin
We present a discussion of the fundamental loss of unitarity that appears in quantum mechanics due to the use of a physical apparatus to measure time. This induces a decoherence effect that is independent of any interaction with the environment and appears in addition to any usual environmental decoherence. The discussion is framed self consistently and aimed to general physicists. We derive the modified Schrödinger equation that arises in quantum mechanics with real clocks and discuss the theoretical and potential experimental implications of this process of decoherence.
Journal of Mathematical Physics | 2005
Cayetano Di Bartolo; Rodolfo Gambini; Rafael A. Porto; Jorge Pullin
We analyze the canonical treatment of classical constrained mechanical systems formulated with a discrete time. We prove that under very general conditions, it is possible to introduce nonsingular canonical transformations that preserve the constraint surface and the Poisson or Dirac bracket structure. The conditions for the preservation of the constraints are more stringent than in the continuous case and as a consequence some of the continuum constraints become second class upon discretization and need to be solved by fixing their associated Lagrange multipliers. The gauge invariance of the discrete theory is encoded in a set of arbitrary functions that appear in the generating function of the evolution equations. The resulting scheme is general enough to accommodate the treatment of field theories on the lattice. This paper attempts to clarify and put on sounder footing a discretization technique that has already been used to treat a variety of systems, including Yang–Mills theories, BF theory, and gen...
To appear in the proceedings of | 2007
Rafael A. Porto; Riccardo Sturani
The problem of motion in General Relativity has lost its academic status and become an active research area since the next generation of gravity wave detectors will rely upon its solution. Here we will show, within scalar gravity, how ideas borrowed from Quantum Field Theory can be used to solve the problem of motion in a systematic fashion. We will concentrate in Post-Newtonian corrections. We will calculate the Einstein-Infeld-Hoffmann action and show how a systematic perturbative expansion puts strong constraints on the couplings of non-derivative interactions in the theory.
Physical Review D | 2004
Rodolfo Gambini; Rafael A. Porto; Jorge Pullin
We have recently argued that if one introduces a relational time in quantum mechanics and quantum gravity, the resulting quantum theory is such that pure states evolve into mixed states. The rate at which states decohere depends on the energy of the states. There is therefore the question of how this can be reconciled with Galilean invariance. More generally, since the relational description is based on objects that are not Dirac observables, the issue of covariance is of importance in the formalism as a whole. In this note we work out an explicit example of a totally constrained, generally covariant system of nonrelativistic particles that shows that the formula for the relational conditional probability is a Galilean scalar and therefore the decoherence rate is invariant.
Physics Letters A | 2008
Rodolfo Gambini; Rafael A. Porto; Jorge Pullin
We show that the use of real measuring rods in quantum mechanics places a fundamental gravitational limit to the level of entanglement that one can ultimately achieve in quantum systems. The result can be seen as a direct consequence of the fundamental gravitational limitations in the measurements of length and time in realistic physical systems. The effect may have implications for long distance teleportation and the measurement problem in quantum mechanics.
International Journal of Modern Physics D | 2004
Rodolfo Gambini; Rafael A. Porto; Jorge Pullin
The introduction of a relational time in quantum gravity naturally implies that pure quantum states evolve into mixed quantum states. We show, using a recently proposed concrete implementation, that the rate at which pure states naturally evolve into mixed ones is faster than that due to collapsing into a black hole that later evaporates. This is rather remarkable since the fundamental mechanism for decoherence is usually very weak. Therefore the black hole information puzzle is rendered de-facto unobservable.