Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rafael Ballabriga is active.

Publication


Featured researches published by Rafael Ballabriga.


ieee nuclear science symposium | 2006

The Medipix3 Prototype, a Pixel Readout Chip Working in Single Photon Counting Mode with Improved Spectrometric Performance

Rafael Ballabriga; M. Campbell; E.H.M. Heijne; Xavier Llopart; L. Tlustos

A prototype pixel detector readout chip has been developed with a new front-end architecture aimed at eliminating the spectral distortion produced by charge diffusion in highly segmented semiconductor detectors. In the new architecture neighbouring pixels communicate with one another. At the corner of each pixel summing circuits add the total charge deposited in each sub-group of 4 pixels. Arbitration logic assigns a hit to the summing circuit with the highest charge. In the case where incoming X-ray photons produce fluorescence-a particular issue in high-Z materials-the charge deposited by those fluorescent photons will be included in the charge sum provided that the deposition takes place within the volume of the pixels neighbouring the initial impact point. The chip is configurable such that either the dimensions of each detector pixel match those of one readout pixel or detector pixels are 4 times greater in area than the readout pixels. In the latter case event-by-event summing is still possible between the larger pixels. As well as this innovative analog front-end circuit, each pixel contains comparators, logic circuits and two 15-bit counters. When the larger detector pixels are used these counters can be configured to permit multiple thresholds in a pixel providing spectroscopic information. The prototype chip has been designed and manufactured in an 8-metal 0.13 mum CMOS technology. First measurements show an electronic pixel noise of ~ 72 e-rms (Single Pixel Mode) and ~ 140 e-rms (Charge Summing Mode).


Journal of Instrumentation | 2013

The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging

Rafael Ballabriga; J Alozy; G Blaj; M. Campbell; M. Fiederle; Erik Fröjdh; E.H.M. Heijne; X. Llopart; M Pichotka; S. Procz; L. Tlustos; Winnie Wong

The Medipix3 chips have been designed to permit spectroscopic imaging in highly segmented hybrid pixel detectors. Spectral degradation due to charge sharing in the sensor has been addressed by means of an architecture in which adjacent pixels communicate in the analog and digital domains on an event-by-event basis to reconstruct the deposited charge in a neighbourhood prior to the assignation of the hit to a single pixel. The Medipix3RX chip architecture is presented. The first results for the characterization of the chip with 300 μm thick Si sensors are given. ~ 72e− r.m.s. noise and ~ 40e− r.m.s. of threshold dispersion after chip equalization have been measured in Single Pixel Mode of operation. The homogeneity of the image in Charge Summing mode is comparable to the Single Pixel Mode image. This demonstrates both modes are suitable for X-ray imaging applications.


IEEE Transactions on Nuclear Science | 2013

Charge Summing in Spectroscopic X-Ray Detectors With High-Z Sensors

Thomas Koenig; Elias Hamann; S. Procz; Rafael Ballabriga; Angelica Cecilia; Marcus Zuber; Xavier Llopart; M. Campbell; A. Fauler; Tilo Baumbach; Michael Fiederle

The spectroscopic performance of photon counting detectors is limited by the effects of charge sharing between neighboring pixels and the emission of characteristic X-rays. For these reasons, an event can be either missed or counted more than once. These effects become more and more of a concern when pixel pitches are reduced, and for the technology available so far, this meant that there would always be a trade-off between a high spatial and a high spectral resolution. In this work, we present first measurements obtained with the new Medipix3RX ASIC, which features a network of charge summing circuits establishing a communication between pixels which helps to mitigate these effects. Combined with cadmium telluride sensors, we show that this new technology is successful at improving a detectors spectroscopic capabilities even at pixel pitches as small as 55 μm. At this pitch, we measure an energy response function similar to that observed for a pixel pitch of 165 μm in the absence of a charge summing circuitry. This amounts to an effective reduction of the pixel area by at least one order of magnitude at a comparable energy response. Additionally, we present synchrotron measurements at high X-ray fluxes, where significant pulse pile-up occurs, and provide first experimental evidence for a net benefit when balancing spectroscopic performance and high flux tolerance in charge summing mode.


IEEE Transactions on Nuclear Science | 2011

Characterization of Medipix3 With Synchrotron Radiation

E.N. Gimenez; Rafael Ballabriga; M. Campbell; Ian Horswell; Xavier Llopart; Julien Marchal; Kawal J. S. Sawhney; N. Tartoni; D. Turecek

Medipix3 is the latest generation of photon counting readout chips of the Medipix family. With the same dimensions as Medipix2 (256 × 256 pixels of 55 μm × 55 μm pitch each), Medipix3 is however implemented in an 8-layer metallization 0.13 μm CMOS technology which leads to an increase in the functionality associated with each pixel over Medipix2. One of the new operational modes implemented in the front-end architecture is the Charge Summing Mode (CSM). This mode consists of a charge reconstruction and hit allocation algorithm which eliminates event-by-event the low energy counts produced by charge-shared events between adjacent pixels. The present work focuses on the study of the CSM mode and compares it to the Single Pixel Mode (SPM) which is the conventional readout method for these kind of detectors and it is also implemented in Medipix3. Tests of a Medipix3 chip bump-bonded to a 300 μm thick silicon photodiode sensor were performed at the Diamond Light Source synchrotron to evaluate the performance of the new Medipix chip. Studies showed that when Medipix3 is operated in CSM mode, it generates a single count per detected event and consequently the charge sharing effect between adjacent pixels is eliminated. However in CSM mode, it was also observed that an incorrect allocation of X-rays counts in the pixels occurred due to an unexpectedly high pixel-to-pixel threshold variation. The present experiment helped to better understand the CSM operating mode and to redesign the Medipix3 to overcome this pixel-to-pixel mismatch.


IEEE Transactions on Nuclear Science | 2004

Imaging properties of the Medipix2 system exploiting single and dual energy thresholds

L. Tlustos; Rafael Ballabriga; M. Campbell; E.H.M. Heijne; K. Kincade; X. Llopart; P. Stejskal

Low noise, high resolution, and high dose efficiency are the common requirements for most X-ray imaging applications. The dose efficiency is especially important for medical imaging systems. We present the imaging performance of the Medipix2 readout chip bump bonded to a 300 mum thick Si detector as a function of the detection threshold, a free parameter not available in conventional charge integrating imaging systems. Spatial resolution has been measured using the modulation transfer function (MTF) and it varies between 8.2 line-pairs/mm and 11.0 line pairs/mm at an MTF value of 70%. An associated measurement of noise power spectrum (NPS) permits us to derive the detective quantum efficiency (DQE) which can be as a high as 25.5% for a broadband incoming spectrum. The influence of charge diffusion in the sensor together with threshold variation in the readout chip is discussed. Although the Medipix2 system is used in photon counting mode with a single threshold in energy, the system is also capable of counting within a given energy window as narrow as ~1.4 keV. First measurements and images using this feature reveal capabilities that allow identifying fluorescence and other sources of disturbance


Journal of Instrumentation | 2011

First CT using Medipix3 and the MARS-CT-3 spectral scanner

Michael F. Walsh; Alex M. T. Opie; J. P. Ronaldson; R. Doesburg; S J Nik; J L Mohr; Rafael Ballabriga; Anthony Butler; Philip H Butler

The MARS research group has created a new version of their scanner for taking improved spectral CT datasets. This version of the scanner (MARS-CT-3) has taken the first Medipix3 CT images of a phantom. MARS-CT-3 incorporates a new gantry, new x-ray sources and the new MARS readout board, as well as the ability to connect gas lines to the specimen. The new gantry has improved mechanical rigidity and can perform scans faster. Magnification can be controlled by moving the detector and the x-ray source independently. The brighter x-ray source means images can be taken six times faster. Gas lines allow the user to control various environmental factors inside the scanner, such as temperature, or deliver oxygen and anaesthetics, providing the ability to do a full spectroscopic CT scan of a live sedated biological specimen, such as a mouse. The new MARS readout is able to read from all current chips from the Medipix family, has faster image downloading, and the use of up to six Medipix detectors in parallel on the same chip carrier. The use of Medipix3 chips allows for compensation of charge sharing via Charge Summing Mode.


Journal of Instrumentation | 2016

Review of hybrid pixel detector readout ASICs for spectroscopic X-ray imaging

Rafael Ballabriga; J Alozy; M. Campbell; Erik Fröjdh; E.H.M. Heijne; Thomas Koenig; X. Llopart; J. Marchal; D. Pennicard; T. Poikela; L. Tlustos; P. Valerio; Winnie Wong; Marcus Zuber

Semiconductor detector readout chips with pulse processing electronics have made possible spectroscopic X-ray imaging, bringing an improvement in the overall image quality and, in the case of medical imaging, a reduction in the X-ray dose delivered to the patient. In this contribution we review the state of the art in semiconductor-detector readout ASICs for spectroscopic X-ray imaging with emphasis on hybrid pixel detector technology. We discuss how some of the key challenges of the technology (such as dealing with high fluxes, maintaining spectral fidelity, power consumption density) are addressed by the various ASICs. In order to understand the fundamental limits of the technology, the physics of the interaction of radiation with the semiconductor detector and the process of signal induction in the input electrodes of the readout circuit are described. Simulations of the process of signal induction are presented that reveal the importance of making use of the small pixel effect to minimize the impact of the slow motion of holes and hole trapping in the induced signal in high-Z sensor materials. This can contribute to preserve fidelity in the measured spectrum with relatively short values of the shaper peaking time. Simulations also show, on the other hand, the distortion in the energy spectrum due to charge sharing and fluorescence photons when the pixel pitch is decreased. However, using recent measurements from the Medipix3 ASIC, we demonstrate that the spectroscopic information contained in the incoming photon beam can be recovered by the implementation in hardware of an algorithm whereby the signal from a single photon is reconstructed and allocated to the pixel with the largest deposition.


Journal of Instrumentation | 2012

Characterization of a commercial 65 nm CMOS technology for SLHC applications

S. Bonacini; P. Valerio; R. Avramidou; Rafael Ballabriga; F. Faccio; K. Kloukinas; A. Marchioro

The radiation characteristics with respect to Total Ionizing Dose (TID) and Single-Event Upsets (SEUs) of a 65 nm CMOS technology have been investigated. Single transistor structures of a variety of dimensions and several basic circuits were designed and fabricated. The circuits include a 64-kbit shift-register, a 56-kbit SRAM and a ring-oscillator. The test chips were irradiated up to 200 Mrad with an X-ray beam and the corresponding transistor threshold shifts and leakage currents were measured. Heavy-ion beam irradiation was performed to assess the SEU sensitivity of the digital parts. Overall, our results give the confidence that the chosen 65 nm CMOS technology can be used in future High Energy Physics (HEP) experiments even without Hardness-By-Design (HBD) solutions, provided that constant monitoring of the TID response is carried out during the full manufacturing phase of the circuits.


Journal of Instrumentation | 2011

Characterization of the Medipix3 pixel readout chip

Rafael Ballabriga; G Blaj; M. Campbell; Michael Fiederle; D. Greiffenberg; E.H.M. Heijne; X. Llopart; R. Plackett; S. Procz; L. Tlustos; D. Turecek; Winnie Wong

The Medipix3 chip is a hybrid pixel detector readout chip working in Single Photon Counting Mode. It has been developed with a new front-end architecture aimed at eliminating the spectral distortion produced by charge diffusion in highly segmented semiconductor detectors. In the new architecture charge deposited in overlapping clusters of four pixels is summed event-by-event and the incoming quantum is assigned as a single hit to the summing circuit with the biggest charge deposit (this mode of operation is called Charge Summing Mode (CSM)). In Single Pixel Mode (SPM) the charge reconstruction and the communication between neighbouring pixels is disabled. This is the operating mode in traditional detector systems. This paper presents the results of the characterization of the chip with electrical stimuli and radioactive sources.


Journal of Instrumentation | 2011

Study of charge-sharing in MEDIPIX3 using a micro-focused synchrotron beam

E.N. Gimenez; Rafael Ballabriga; M. Campbell; Ian Horswell; Xavier Llopart; Julien Marchal; Kawal J. S. Sawhney; N. Tartoni; D Turecek

X-ray photon-counting detectors consisting of a silicon pixel array sensor bump-bonded to a CMOS electronic readout chip offer several advantages over traditional X-ray detection technologies used for synchrotron applications. They offer high frame rate, dynamic range, count rate capability and signal-to-noise ratio. A survey of the requirements for future synchrotron detectors carried out at the Diamond Light Source synchrotron highlighted the needs for detectors with a pixel size of the order of 50?m. Reducing the pixel size leads to an increase of charge-sharing events between adjacent pixels and, therefore, to a degradation of the energy resolution and image quality of the detector. This effect was observed with MEDIPIX2, a photon-counting readout chip with a pixel size of 55?m. The lastest generation of the MEDIPIX family, MEDIPIX3, is designed to overcome this charge-sharing effect in an implemented readout operating mode referred to as Charge Summing Mode. MEDIPIX3 has the same pixel size as MEDIPIX2, but it is implemented in an 8-metal 0.13?m CMOS technology which enables increased functionality per pixel. The present work focuses on the study of the charge-sharing effect when the MEDIPIX3 is operated in Charge Summing Mode compared to the conventional readout mode, referred to as Single Pixel Mode. Tests of a standard silicon photodiode array bump-bonded to MEDIPIX3 were performed in beamline B16 at the Diamond Light Source synchrotron. A monochromatic micro-focused beam of 2.9?m x 2.2?m size at 15keV was used to scan a cluster of nine pixels in order to study the charge collection and X-ray count allocation process for each readout mode, Single Pixel Mode and Charge Summing Mode. The study showed that charge-shared events were eliminated when Medipix3 was operated in Charge Summing Mode.

Collaboration


Dive into the Rafael Ballabriga's collaboration.

Researchain Logo
Decentralizing Knowledge