Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rafael de Cabo is active.

Publication


Featured researches published by Rafael de Cabo.


Nature | 2006

Resveratrol improves health and survival of mice on a high-calorie diet.

Joseph A. Baur; Kevin J. Pearson; Nathaniel O Price; Hamish A. Jamieson; Carles Lerin; Avash Kalra; Vinayakumar Prabhu; Joanne S. Allard; Guillermo López-Lluch; Kaitlyn N. Lewis; Paul J. Pistell; Suresh Poosala; Kevin G. Becker; Olivier Boss; Dana M. Gwinn; Mingyi Wang; Sharan Ramaswamy; Kenneth W. Fishbein; Richard G. Spencer; Edward G. Lakatta; David G. Le Couteur; Reuben J. Shaw; Plácido Navas; Pere Puigserver; Donald K. Ingram; Rafael de Cabo; David A. Sinclair

Resveratrol (3,5,4′-trihydroxystilbene) extends the lifespan of diverse species including Saccharomyces cerevisiae, Caenorhabditis elegans and Drosophila melanogaster. In these organisms, lifespan extension is dependent on Sir2, a conserved deacetylase proposed to underlie the beneficial effects of caloric restriction. Here we show that resveratrol shifts the physiology of middle-aged mice on a high-calorie diet towards that of mice on a standard diet and significantly increases their survival. Resveratrol produces changes associated with longer lifespan, including increased insulin sensitivity, reduced insulin-like growth factor-1 (IGF-I) levels, increased AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) activity, increased mitochondrial number, and improved motor function. Parametric analysis of gene set enrichment revealed that resveratrol opposed the effects of the high-calorie diet in 144 out of 153 significantly altered pathways. These data show that improving general health in mammals using small molecules is an attainable goal, and point to new approaches for treating obesity-related disorders and diseases of ageing.


Cell Metabolism | 2008

Resveratrol Delays Age-Related Deterioration and Mimics Transcriptional Aspects of Dietary Restriction without Extending Life Span

Kevin J. Pearson; Joseph A. Baur; Kaitlyn N. Lewis; Leonid Peshkin; Nathan L. Price; Nazar Labinskyy; William R. Swindell; Davida Kamara; Robin K. Minor; Evelyn Perez; Hamish A. Jamieson; Yongqing Zhang; Stephen R. Dunn; Kumar Sharma; Nancy Pleshko; Laura A. Woollett; Anna Csiszar; Yuji Ikeno; David G. Le Couteur; Peter J. Elliott; Kevin G. Becker; Plácido Navas; Donald K. Ingram; Norman S. Wolf; Zoltan Ungvari; David A. Sinclair; Rafael de Cabo

A small molecule that safely mimics the ability of dietary restriction (DR) to delay age-related diseases in laboratory animals is greatly sought after. We and others have shown that resveratrol mimics effects of DR in lower organisms. In mice, we find that resveratrol induces gene expression patterns in multiple tissues that parallel those induced by DR and every-other-day feeding. Moreover, resveratrol-fed elderly mice show a marked reduction in signs of aging, including reduced albuminuria, decreased inflammation, and apoptosis in the vascular endothelium, increased aortic elasticity, greater motor coordination, reduced cataract formation, and preserved bone mineral density. However, mice fed a standard diet did not live longer when treated with resveratrol beginning at 12 months of age. Our findings indicate that resveratrol treatment has a range of beneficial effects in mice but does not increase the longevity of ad libitum-fed animals when started midlife.


Cell Metabolism | 2012

SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function

Nathan L. Price; Ana P. Gomes; Alvin J.Y. Ling; Filipe V. Duarte; Alejandro Martin-Montalvo; Brian J. North; Beamon Agarwal; Lan Ye; Giorgio Ramadori; João S. Teodoro; Basil P. Hubbard; Ana Teresa Varela; James G. Davis; Behzad Varamini; Angela Hafner; Ruin Moaddel; Anabela P. Rolo; Roberto Coppari; Carlos M. Palmeira; Rafael de Cabo; Joseph A. Baur; David A. Sinclair

Resveratrol induces mitochondrial biogenesis and protects against metabolic decline, but whether SIRT1 mediates these benefits is the subject of debate. To circumvent the developmental defects of germline SIRT1 knockouts, we have developed an inducible system that permits whole-body deletion of SIRT1 in adult mice. Mice treated with a moderate dose of resveratrol showed increased mitochondrial biogenesis and function, AMPK activation, and increased NAD(+) levels in skeletal muscle, whereas SIRT1 knockouts displayed none of these benefits. A mouse overexpressing SIRT1 mimicked these effects. A high dose of resveratrol activated AMPK in a SIRT1-independent manner, demonstrating that resveratrol dosage is a critical factor. Importantly, at both doses of resveratrol no improvements in mitochondrial function were observed in animals lacking SIRT1. Together these data indicate that SIRT1 plays an essential role in the ability of moderate doses of resveratrol to stimulate AMPK and improve mitochondrial function both in vitro and in vivo.


Nature | 2012

Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study

Julie A. Mattison; George S. Roth; T. Mark Beasley; Edward M. Tilmont; April M. Handy; Richard Herbert; Dan L. Longo; David B. Allison; Jennifer E. Young; Mark Bryant; Dennis Barnard; Walter F. Ward; Wenbo Qi; Donald K. Ingram; Rafael de Cabo

Calorie restriction (CR), a reduction of 10–40% in intake of a nutritious diet, is often reported as the most robust non-genetic mechanism to extend lifespan and healthspan. CR is frequently used as a tool to understand mechanisms behind ageing and age-associated diseases. In addition to and independently of increasing lifespan, CR has been reported to delay or prevent the occurrence of many chronic diseases in a variety of animals. Beneficial effects of CR on outcomes such as immune function, motor coordination and resistance to sarcopenia in rhesus monkeys have recently been reported. We report here that a CR regimen implemented in young and older age rhesus monkeys at the National Institute on Aging (NIA) has not improved survival outcomes. Our findings contrast with an ongoing study at the Wisconsin National Primate Research Center (WNPRC), which reported improved survival associated with 30% CR initiated in adult rhesus monkeys (7–14 years) and a preliminary report with a small number of CR monkeys. Over the years, both NIA and WNPRC have extensively documented beneficial health effects of CR in these two apparently parallel studies. The implications of the WNPRC findings were important as they extended CR findings beyond the laboratory rodent and to a long-lived primate. Our study suggests a separation between health effects, morbidity and mortality, and similar to what has been shown in rodents, study design, husbandry and diet composition may strongly affect the life-prolonging effect of CR in a long-lived nonhuman primate.


Cell | 2007

Nutrient-Sensitive Mitochondrial NAD+ Levels Dictate Cell Survival

Hongying Yang; Tianle Yang; Joseph A. Baur; Evelyn Perez; Takashi Matsui; Juan Jose Carmona; Dudley W. Lamming; Nadja C. de Souza-Pinto; Vilhelm A. Bohr; Anthony Rosenzweig; Rafael de Cabo; Anthony A. Sauve; David A. Sinclair

A major cause of cell death caused by genotoxic stress is thought to be due to the depletion of NAD(+) from the nucleus and the cytoplasm. Here we show that NAD(+) levels in mitochondria remain at physiological levels following genotoxic stress and can maintain cell viability even when nuclear and cytoplasmic pools of NAD(+) are depleted. Rodents fasted for 48 hr show increased levels of the NAD(+) biosynthetic enzyme Nampt and a concomitant increase in mitochondrial NAD(+). Increased Nampt provides protection against cell death and requires an intact mitochondrial NAD(+) salvage pathway as well as the mitochondrial NAD(+)-dependent deacetylases SIRT3 and SIRT4. We discuss the relevance of these findings to understanding how nutrition modulates physiology and to the evolution of apoptosis.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2011

Rapamycin, But Not Resveratrol or Simvastatin, Extends Life Span of Genetically Heterogeneous Mice

Richard A. Miller; David E. Harrison; Clinton M. Astle; Joseph A. Baur; Angela R. Boyd; Rafael de Cabo; Elizabeth Fernandez; Kevin Flurkey; Martin A. Javors; James F. Nelson; Carlos J. Orihuela; Scott D. Pletcher; Zelton Dave Sharp; David A. Sinclair; Joseph W. Starnes; J. Erby Wilkinson; Nancy L. Nadon; Randy Strong

Rapamycin was administered in food to genetically heterogeneous mice from the age of 9 months and produced significant increases in life span, including maximum life span, at each of three test sites. Median survival was extended by an average of 10% in males and 18% in females. Rapamycin attenuated age-associated decline in spontaneous activity in males but not in females. Causes of death were similar in control and rapamycin-treated mice. Resveratrol (at 300 and 1200 ppm food) and simvastatin (12 and 120 ppm) did not have significant effects on survival in male or female mice. Further evaluation of rapamycins effects on mice is likely to help delineate the role of the mammalian target of rapamycin complexes in the regulation of aging rate and age-dependent diseases and may help to guide a search for drugs that retard some or all of the diseases of aging.


Cell | 2013

Declining NAD+ Induces a Pseudohypoxic State Disrupting Nuclear-Mitochondrial Communication during Aging

Ana P. Gomes; Nathan L. Price; Alvin J.Y. Ling; Javid Moslehi; Magdalene K. Montgomery; Luis Rajman; James P. White; João S. Teodoro; Christiane D. Wrann; Basil P. Hubbard; Evi M. Mercken; Carlos M. Palmeira; Rafael de Cabo; Anabela P. Rolo; Nigel Turner; Eric L. Bell; David A. Sinclair

Ever since eukaryotes subsumed the bacterial ancestor of mitochondria, the nuclear and mitochondrial genomes have had to closely coordinate their activities, as each encode different subunits of the oxidative phosphorylation (OXPHOS) system. Mitochondrial dysfunction is a hallmark of aging, but its causes are debated. We show that, during aging, there is a specific loss of mitochondrial, but not nuclear, encoded OXPHOS subunits. We trace the cause to an alternate PGC-1α/β-independent pathway of nuclear-mitochondrial communication that is induced by a decline in nuclear NAD(+) and the accumulation of HIF-1α under normoxic conditions, with parallels to Warburg reprogramming. Deleting SIRT1 accelerates this process, whereas raising NAD(+) levels in old mice restores mitochondrial function to that of a young mouse in a SIRT1-dependent manner. Thus, a pseudohypoxic state that disrupts PGC-1α/β-independent nuclear-mitochondrial communication contributes to the decline in mitochondrial function with age, a process that is apparently reversible.


PLOS ONE | 2008

The SIRT1 Deacetylase Suppresses Intestinal Tumorigenesis and Colon Cancer Growth

Ron Firestein; Gil Blander; Shaday Michan; Philipp Oberdoerffer; Shuji Ogino; Jennifer Campbell; Anupama Bhimavarapu; Sandra Luikenhuis; Rafael de Cabo; Charles S. Fuchs; William C. Hahn; Leonard Guarente; David A. Sinclair

Numerous longevity genes have been discovered in model organisms and altering their function results in prolonged lifespan. In mammals, some have speculated that any health benefits derived from manipulating these same pathways might be offset by increased cancer risk on account of their propensity to boost cell survival. The Sir2/SIRT1 family of NAD+-dependent deacetylases is proposed to underlie the health benefits of calorie restriction (CR), a diet that broadly suppresses cancer in mammals. Here we show that CR induces a two-fold increase SIRT1 expression in the intestine of rodents and that ectopic induction of SIRT1 in a β-catenin-driven mouse model of colon cancer significantly reduces tumor formation, proliferation, and animal morbidity in the absence of CR. We show that SIRT1 deacetylates β-catenin and suppresses its ability to activate transcription and drive cell proliferation. Moreover, SIRT1 promotes cytoplasmic localization of the otherwise nuclear-localized oncogenic form of β-catenin. Consistent with this, a significant inverse correlation was found between the presence of nuclear SIRT1 and the oncogenic form of β−catenin in 81 human colon tumor specimens analyzed. Taken together, these observations show that SIRT1 suppresses intestinal tumor formation in vivo and raise the prospect that therapies targeting SIRT1 may be of clinical use in β−catenin-driven malignancies.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake

R. Michael Anson; Zhihong Guo; Rafael de Cabo; Titilola Iyun; Michelle Rios; Adrienne Hagepanos; Donald K. Ingram; Mark A. Lane; Mark P. Mattson

Dietary restriction has been shown to have several health benefits including increased insulin sensitivity, stress resistance, reduced morbidity, and increased life span. The mechanism remains unknown, but the need for a long-term reduction in caloric intake to achieve these benefits has been assumed. We report that when C57BL/6 mice are maintained on an intermittent fasting (alternate-day fasting) dietary-restriction regimen their overall food intake is not decreased and their body weight is maintained. Nevertheless, intermittent fasting resulted in beneficial effects that met or exceeded those of caloric restriction including reduced serum glucose and insulin levels and increased resistance of neurons in the brain to excitotoxic stress. Intermittent fasting therefore has beneficial effects on glucose regulation and neuronal resistance to injury in these mice that are independent of caloric intake.


Science | 2013

Suppression of Oxidative Stress by β-Hydroxybutyrate, an Endogenous Histone Deacetylase Inhibitor

Tadahiro Shimazu; Matthew D. Hirschey; John R. S. Newman; Wenjuan He; Kotaro Shirakawa; Natacha Le Moan; Carrie A. Grueter; Hyungwook Lim; Laura Saunders; Robert D. Stevens; Christopher B. Newgard; Robert V. Farese; Rafael de Cabo; Scott M. Ulrich; Katerina Akassoglou; Eric Verdin

Stress Protector During prolonged fasting, the oxidation of fatty acids leads to increased accumulation of d-β-hydroxybutyrate (βOHB) in the bloodstream. Such increased concentrations of βOHB inhibit class I histone deacetylases. Histone acetylation in turn influences transcriptional activity at various genes. Shimazu et al. (p. 211, published online 6 December; see the Perspective by Sassone-Corsi) found that among the genes showing increased transcription in animals treated with high concentrations of βOHB were two genes implicated in cellular responses to oxidative stress. When treated ahead of time with βOHB, mice were protected from the toxic effects of the oxidative stress causing poison paraquat. Ketone bodies, metabolites that accumulate during fasting, change gene expression by inhibiting histone deacetylases. [Also see Perspective by Sassone-Corsi] Concentrations of acetyl–coenzyme A and nicotinamide adenine dinucleotide (NAD+) affect histone acetylation and thereby couple cellular metabolic status and transcriptional regulation. We report that the ketone body d-β-hydroxybutyrate (βOHB) is an endogenous and specific inhibitor of class I histone deacetylases (HDACs). Administration of exogenous βOHB, or fasting or calorie restriction, two conditions associated with increased βOHB abundance, all increased global histone acetylation in mouse tissues. Inhibition of HDAC by βOHB was correlated with global changes in transcription, including that of the genes encoding oxidative stress resistance factors FOXO3A and MT2. Treatment of cells with βOHB increased histone acetylation at the Foxo3a and Mt2 promoters, and both genes were activated by selective depletion of HDAC1 and HDAC2. Consistent with increased FOXO3A and MT2 activity, treatment of mice with βOHB conferred substantial protection against oxidative stress.

Collaboration


Dive into the Rafael de Cabo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald K. Ingram

National Center for Toxicological Research

View shared research outputs
Top Co-Authors

Avatar

Michel Bernier

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sarah J. Mitchell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Julie A. Mattison

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Plácido Navas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zoltan Ungvari

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Anna Csiszar

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Robin K. Minor

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge