Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rafael G. Saer is active.

Publication


Featured researches published by Rafael G. Saer.


Journal of the American Chemical Society | 2014

A DNA-directed light-harvesting/reaction center system.

Palash K. Dutta; Symon Levenberg; Andrey Loskutov; Daniel Jun; Rafael G. Saer; J. Thomas Beatty; Su Lin; Yan Liu; Neal W. Woodbury; Hao Yan

A structurally and compositionally well-defined and spectrally tunable artificial light-harvesting system has been constructed in which multiple organic dyes attached to a three-arm-DNA nanostructure serve as an antenna conjugated to a photosynthetic reaction center isolated from Rhodobacter sphaeroides 2.4.1. The light energy absorbed by the dye molecules is transferred to the reaction center, where charge separation takes place. The average number of DNA three-arm junctions per reaction center was tuned from 0.75 to 2.35. This DNA-templated multichromophore system serves as a modular light-harvesting antenna that is capable of being optimized for its spectral properties, energy transfer efficiency, and photostability, allowing one to adjust both the size and spectrum of the resulting structures. This may serve as a useful test bed for developing nanostructured photonic systems.


Journal of the American Chemical Society | 2014

Reengineering the optical absorption cross-section of photosynthetic reaction centers.

Palash K. Dutta; Su Lin; Andrey Loskutov; Symon Levenberg; Daniel Jun; Rafael G. Saer; J. Thomas Beatty; Yan Liu; Hao Yan; Neal W. Woodbury

Engineered cysteine residues near the primary electron donor (P) of the reaction center from the purple photosynthetic bacterium Rhodobacter sphaeroides were covalently conjugated to each of several dye molecules in order to explore the geometric design and spectral requirements for energy transfer between an artificial antenna system and the reaction center. An average of 2.5 fluorescent dye molecules were attached at specific locations near P. The enhanced absorbance cross-section afforded by conjugation of Alexa Fluor 660 dyes resulted in a 2.2-fold increase in the formation of reaction center charge-separated state upon intensity-limited excitation at 650 nm. The effective increase in absorbance cross-section resulting from the conjugation of two other dyes, Alexa Fluor 647 and Alexa Fluor 750, was also investigated. The key parameters that dictate the efficiency of dye-to-reaction center energy transfer and subsequent charge separation were examined using both steady-state and time-resolved fluorescence spectroscopy as well as transient absorbance spectroscopy techniques. An understanding of these parameters is an important first step toward developing more complex model light-harvesting systems integrated with reaction centers.


Methods in Enzymology | 2011

Modification of the Genome of Rhodobacter sphaeroides and Construction of Synthetic Operons

Paul R. Jaschke; Rafael G. Saer; Stephan Noll; J. Thomas Beatty

The α-proteobacterium Rhodobacter sphaeroides is an exemplary model organism for the creation and study of novel protein expression systems, especially membrane protein complexes that harvest light energy to yield electrical energy. Advantages of this organism include a sequenced genome, tools for genetic engineering, a well-characterized metabolism, and a large membrane surface area when grown under hypoxic or anoxic conditions. This chapter provides a framework for the utilization of R. sphaeroides as a model organism for membrane protein expression, highlighting key advantages and shortcomings. Procedures covered in this chapter include the creation of chromosomal gene deletions, disruptions, and replacements, as well as the construction of a synthetic operon using a model promoter to induce expression of modified photosynthetic reaction center proteins for structural and functional analysis.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex

Gregory S. Orf; Rafael G. Saer; Dariusz M. Niedzwiedzki; Hao F. Zhang; Chelsea L. McIntosh; Jason W. Schultz; Liviu M. Mirica; Robert E. Blankenship

Significance All photosynthetic organisms face the challenge of absorbing solar energy and regulating its flow through their light-harvesting antennas across widely varying photic conditions. For anoxygenic phototrophs, this process is complicated by the need to downregulate photosynthetic output when oxygen is encountered. The Fenna–Matthews–Olson protein from green sulfur bacteria is able to quench excitations in aerobic conditions effectively despite its apparent lack of photoprotective accessory molecules, indicating a previously unidentified type of energy transfer regulation. In this study, we provide evidence for a novel energy-quenching mechanism involving cysteine–bacteriochlorophyll photochemistry. This interaction should be able to be programed into other natural or bio-inspired antennas, opening new possibilities for regulating these systems in response to excess light. Light-harvesting antenna complexes not only aid in the capture of solar energy for photosynthesis, but regulate the quantity of transferred energy as well. Light-harvesting regulation is important for protecting reaction center complexes from overexcitation, generation of reactive oxygen species, and metabolic overload. Usually, this regulation is controlled by the association of light-harvesting antennas with accessory quenchers such as carotenoids. One antenna complex, the Fenna–Matthews–Olson (FMO) antenna protein from green sulfur bacteria, completely lacks carotenoids and other known accessory quenchers. Nonetheless, the FMO protein is able to quench energy transfer in aerobic conditions effectively, indicating a previously unidentified type of regulatory mechanism. Through de novo sequencing MS, chemical modification, and mutagenesis, we have pinpointed the source of the quenching action to cysteine residues (Cys49 and Cys353) situated near two low-energy bacteriochlorophylls in the FMO protein from Chlorobaculum tepidum. Removal of these cysteines (particularly removal of the completely conserved Cys353) through N-ethylmaleimide modification or mutagenesis to alanine abolishes the aerobic quenching effect. Electrochemical analysis and electron paramagnetic resonance spectra suggest that in aerobic conditions the cysteine thiols are converted to thiyl radicals which then are capable of quenching bacteriochlorophyll excited states through electron transfer photochemistry. This simple mechanism has implications for the design of bio-inspired light-harvesting antennas and the redesign of natural photosynthetic systems.


Biochemical Journal | 2017

Light harvesting in phototrophic bacteria: structure and function

Rafael G. Saer; Robert E. Blankenship

This review serves as an introduction to the variety of light-harvesting (LH) structures present in phototrophic prokaryotes. It provides an overview of the LH complexes of purple bacteria, green sulfur bacteria (GSB), acidobacteria, filamentous anoxygenic phototrophs (FAP), and cyanobacteria. Bacteria have adapted their LH systems for efficient operation under a multitude of different habitats and light qualities, performing both oxygenic (oxygen-evolving) and anoxygenic (non-oxygen-evolving) photosynthesis. For each LH system, emphasis is placed on the overall architecture of the pigment-protein complex, as well as any relevant information on energy transfer rates and pathways. This review addresses also some of the more recent findings in the field, such as the structure of the CsmA chlorosome baseplate and the whole-cell kinetics of energy transfer in GSB, while also pointing out some areas in need of further investigation.


Biochemistry | 2013

Role of Rhodobacter sphaeroides Photosynthetic Reaction Center Residue M214 in the Composition, Absorbance Properties, and Conformations of HA and BA Cofactors

Rafael G. Saer; Amelia Hardjasa; Federico I. Rosell; and A. Grant Mauk; Michael E. P. Murphy; J.T. Beatty

In the native reaction center (RC) of Rhodobacter sphaeroides, the side chain of (M)L214 projects orthogonally toward the plane and into the center of the A branch bacteriopheophytin (BPhe) macrocycle. The possibility that this side chain is responsible for the dechelation of the central Mg(2+) of bacteriochlorophyll (BChl) was investigated by replacement of (M)214 with residues possessing small, nonpolar side chains that can neither coordinate nor block access to the central metal ion. The (M)L214 side chain was also replaced with Cys, Gln, and Asn to evaluate further the requirements for assembly of the RC with BChl in the HA pocket. Photoheterotrophic growth studies showed no difference in growth rates of the (M)214 nonpolar mutants at a low light intensity, but the growth of the amide-containing mutants was impaired. The absorbance spectra of purified RCs indicated that although absorbance changes are associated with the nonpolar mutations, the nonpolar mutant RC pigment compositions are the same as in the wild-type protein. Crystal structures of the (M)L214G, (M)L214A, and (M)L214N mutants were determined (determined to 2.2-2.85 Å resolution), confirming the presence of BPhe in the HA pocket and revealing alternative conformations of the phytyl tail of the accessory BChl in the BA site of these nonpolar mutants. Our results demonstrate that (i) BChl is converted to BPhe in a manner independent of the aliphatic side chain length of nonpolar residues replacing (M)214, (ii) BChl replaces BPhe if residue (M)214 has an amide-bearing side chain, (iii) (M)214 side chains containing sulfur are not sufficient to bind BChl in the HA pocket, and (iv) the (M)214 side chain influences the conformation of the phytyl tail of the BA BChl.


Biochimica et Biophysica Acta | 2016

Perturbation of bacteriochlorophyll molecules in Fenna-Matthews-Olson protein complexes through mutagenesis of cysteine residues.

Rafael G. Saer; Gregory S. Orf; Xun Lu; Hao F. Zhang; Matthew J. Cuneo; Dean A. A. Myles; Robert E. Blankenship

The Fenna-Matthews-Olson (FMO) pigment-protein complex in green sulfur bacteria transfers excitation energy from the chlorosome antenna complex to the reaction center. In understanding energy transfer in the FMO protein, the individual contributions of the bacteriochlorophyll pigments to the FMO complexs absorption spectrum could provide detailed information with which molecular and energetic models can be constructed. The absorption properties of the pigments, however, are such that their spectra overlap significantly. To overcome this, we used site-directed mutagenesis to construct a series of mutant FMO complexes in the model green sulfur bacterium Chlorobaculum tepidum (formerly Chlorobium tepidum). Two cysteines at positions 49 and 353 in the C. tepidum FMO complex, which reside near hydrogen bonds between BChls 2 and 3, and their amino acid binding partner serine 73 and tyrosine 15, respectively, were changed to alanine residues. The resulting C49A, C353A, and C49A C353A double mutants were analyzed with a combination of optical absorption and circular dichroism (CD) spectroscopies. Our results revealed changes in the absorption properties of several underlying spectral components in the FMO complex, as well as the redox behavior of the complex in response to the reductant sodium dithionite. A high-resolution X-ray structure of the C49A C353A double mutant reveals that these spectral changes appear to be independent of any major structural rearrangements in the FMO mutants. Our findings provide important tests for theoretical calculations of the C. tepidum FMO absorption spectrum, and additionally highlight a possible role for cysteine residues in the redox activity of the pigment-protein complex.


Biochemistry | 2017

Native Mass Spectrometry Analysis of Oligomerization States of Fluorescence Recovery Protein and Orange Carotenoid Protein: Two Proteins Involved in the Cyanobacterial Photoprotection Cycle

Yue Lu; Haijun Liu; Rafael G. Saer; Hao F. Zhang; Christine Meyer; Veronica L. Li; Liuqing Shi; Jeremy D. King; Michael L. Gross; Robert E. Blankenship

The orange carotenoid protein (OCP) and fluorescence recovery protein (FRP) are present in many cyanobacteria and regulate an essential photoprotection cycle in an antagonistic manner as a function of light intensity. We characterized the oligomerization states of OCP and FRP by using native mass spectrometry, a technique that has the capability of studying native proteins under a wide range of protein concentrations and molecular masses. We found that dimeric FRP is the predominant state at protein concentrations ranging from 3 to 180 μM and that higher-order oligomers gradually form at protein concentrations above this range. The OCP, however, demonstrates significantly different oligomerization behavior. Monomeric OCP (mOCP) dominates at low protein concentrations, with an observable population of dimeric OCP (dOCP). The ratio of dOCP to mOCP, however, increases proportionally with protein concentration. Higher-order OCP oligomers form at protein concentrations beyond 10 μM. Additionally, native mass spectrometry coupled with ion mobility allowed us to measure protein collisional cross sections and interrogate the unfolding of different FRP and OCP oligomers. We found that monomeric FRP exhibits a one-stage unfolding process, which could be correlated with its C-terminal bent crystal structure. The structural domain compositions of FRP and OCP are compared and discussed.


Biochimica et Biophysica Acta | 2017

Probing the excitonic landscape of the Chlorobaculum tepidum Fenna-Matthews-Olson (FMO) complex: a mutagenesis approach

Rafael G. Saer; Valentyn Stadnytskyi; Nikki Cecil M. Magdaong; Carrie Goodson; Sergei Savikhin; Robert E. Blankenship

In this paper we report the steady-state optical properties of a series of site-directed mutants in the Fenna-Matthews-Olson (FMO) complex of Chlorobaculum tepidum, a photosynthetic green sulfur bacterium. The FMO antenna complex has historically been used as a model system for energy transfer due to the water-soluble nature of the protein, its stability at room temperature, as well as the availability of high-resolution structural data. Eight FMO mutants were constructed with changes in the environment of each of the bacteriochlorophyll a pigments found within each monomer of the homotrimeric FMO complex. Our results reveal multiple changes in low temperature absorption, as well as room temperature CD in each mutant compared to the wild-type FMO complex. These datasets were subsequently used to model the site energies of each pigment in the FMO complex by employing three different Hamiltonians from the literature. This enabled a basic approximation of the site energy shifts imparted on each pigment by the changed amino acid residue. These simulations suggest that, while the three Hamiltonians used in this work provide good fits to the wild-type FMO absorption spectrum, further efforts are required to obtain good fits to the mutant minus wild-type absorption difference spectra. This demonstrates that the use of FMO mutants can be a valuable tool to refine and iterate the current models of energy transfer in this system.


Biochemistry | 2017

A Molecular Mechanism for Nonphotochemical Quenching in Cyanobacteria

Yue Lu; Haijun Liu; Rafael G. Saer; Veronica L. Li; Hao F. Zhang; Liuqing Shi; Carrie Goodson; Michael L. Gross; Robert E. Blankenship

The cyanobacterial orange carotenoid protein (OCP) protects photosynthetic cyanobacteria from photodamage by dissipating excess excitation energy collected by phycobilisomes (PBS) as heat. Dissociation of the PBS-OCP complex in vivo is facilitated by another protein known as the fluorescence recovery protein (FRP), which primarily exists as a dimeric complex. We used various mass spectrometry (MS)-based techniques to investigate the molecular mechanism of this FRP-mediated process. FRP in the dimeric state (dFRP) retains its high affinity for the C-terminal domain (CTD) of OCP in the red state (OCPr). Site-directed mutagenesis and native MS suggest the head region on FRP is a candidate to bind OCP. After attachment to the CTD, the conformational changes of dFRP allow it to bridge the two domains, facilitating the reversion of OCPr into the orange state (OCPo) accompanied by a structural rearrangement of dFRP. Interestingly, we found a mutual response between FRP and OCP; that is, FRP and OCPr destabilize each other, whereas FRP and OCPo stabilize each other. A detailed mechanism of FRP function is proposed on the basis of the experimental results.

Collaboration


Dive into the Rafael G. Saer's collaboration.

Top Co-Authors

Avatar

Robert E. Blankenship

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

J. Thomas Beatty

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Daniel Jun

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Hao F. Zhang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

John D. W. Madden

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Su Lin

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Yue Lu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Haijun Liu

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge