Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rafael Grytz is active.

Publication


Featured researches published by Rafael Grytz.


Journal of The Mechanical Behavior of Biomedical Materials | 2009

Constitutive modeling of crimped collagen fibrils in soft tissues

Rafael Grytz; Günther Meschke

A microstructurally oriented constitutive formulation for the hyperelastic response of crimped collagen fibrils existing in soft connective tissues is proposed. The model is based on observations that collagen fibrils embedded in a soft matrix crimp into a smooth three-dimensional pattern when unloaded. Following ideas presented by Beskos and Jenkins [Beskos, D., Jenkins, J., 1975. A mechanical model for mammalian tendon. ASME Journal of Applied Mechanics 42, 755-758] and Freed and Doehring [Freed, A., Doehring, T., 2005. Elastic model for crimped collagen fibrils. Journal of Biomechanical Engineering 127, 587-593] the collagen fibril crimp is approximated by a cylindrical helix to represent the constitutive behavior of the hierarchical organized substructure of biological tissues at the fibrillar level. The model is derived from the nonlinear axial force-stretch relationship of an extensible helical spring, including the full extension of the spring as a limit case. The geometrically nonlinear solution of the extensible helical spring is carried out by an iterative procedure. The model only requires one material parameter and two geometrical parameters to be determined from experiments. The ability of the proposed model to reproduce the biomechanical response of fibrous tissues is demonstrated for fascicles from rat tail tendons, for porcine cornea strips, and for bovine Achilles tendons.


Biomechanics and Modeling in Mechanobiology | 2011

The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach

Rafael Grytz; Günther Meschke; Jost B. Jonas

The biomechanics of the optic nerve head is assumed to play an important role in ganglion cell loss in glaucoma. Organized collagen fibrils form complex networks that introduce strong anisotropic and nonlinear attributes into the constitutive response of the peripapillary sclera (PPS) and lamina cribrosa (LC) dominating the biomechanics of the optic nerve head. The recently presented computational remodeling approach (Grytz and Meschke in Biomech Model Mechanobiol 9:225–235, 2010) was used to predict the micro-architecture in the LC and PPS, and to investigate its impact on intraocular pressure–related deformations. The mechanical properties of the LC and PPS were derived from a microstructure-oriented constitutive model that included the stretch-dependent stiffening and the statistically distributed orientations of the collagen fibrils. Biomechanically induced adaptation of the local micro-architecture was captured by allowing collagen fibrils to be reoriented in response to the intraocular pressure–related loading conditions. In agreement with experimental observations, the remodeling algorithm predicted the existence of an annulus of fibrils around the scleral canal in the PPS, and a predominant radial orientation of fibrils in the periphery of the LC. The peripapillary annulus significantly reduced the intraocular pressure–related expansion of the scleral canal and shielded the LC from high tensile stresses. The radial oriented fibrils in the LC periphery reinforced the LC against transversal shear stresses and reduced LC bending deformations. The numerical approach presents a novel and reasonable biomechanical explanation of the spatial orientation of fibrillar collagen in the optic nerve head.


Biomechanics and Modeling in Mechanobiology | 2010

A computational remodeling approach to predict the physiological architecture of the collagen fibril network in corneo-scleral shells

Rafael Grytz; Günther Meschke

Organized collagen fibrils form complex networks that introduce strong anisotropic and highly nonlinear attributes into the constitutive response of human eye tissues. Physiological adaptation of the collagen network and the mechanical condition within biological tissues are complex and mutually dependent phenomena. In this contribution, a computational model is presented to investigate the interaction between the collagen fibril architecture and mechanical loading conditions in the corneo-scleral shell. The biomechanical properties of eye tissues are derived from the single crimped fibril at the micro-scale via the collagen network of distributed fibrils at the meso-scale to the incompressible and anisotropic soft tissue at the macro-scale. Biomechanically induced remodeling of the collagen network is captured on the meso-scale by allowing for a continuous re-orientation of preferred fibril orientations and a continuous adaptation of the fibril dispersion. The presented approach is applied to a numerical human eye model considering the cornea and sclera. The predicted fibril morphology correlates well with experimental observations from X-ray scattering data.


Journal of The Mechanical Behavior of Biomedical Materials | 2014

Material properties of the posterior human sclera

Rafael Grytz; Massimo A. Fazio; Michaël J. A. Girard; Vincent Libertiaux; Luigi Bruno; Stuart K. Gardiner; Christopher A. Girkin; J. Crawford Downs

To characterize the material properties of posterior and peripapillary sclera from human donors, and to investigate the macro- and micro-scale strains as potential control mechanisms governing mechanical homeostasis. Posterior scleral shells from 9 human donors aged 57-90 years were subjected to IOP elevations from 5 to 45mmHg and the resulting full-field displacements were recorded using laser speckle interferometry. Eye-specific finite element models were generated based on experimentally measured scleral shell surface geometry and thickness. Inverse numerical analyses were performed to identify material parameters for each eye by matching experimental deformation measurements to model predictions using a microstructure-based constitutive formulation that incorporates the crimp response and anisotropic architecture of scleral collagen fibrils. The material property fitting produced models that fit both the overall and local deformation responses of posterior scleral shells very well. The nonlinear stiffening of the sclera with increasing IOP was well reproduced by the uncrimping of scleral collagen fibrils, and a circumferentially aligned ring of collagen fibrils around the scleral canal was predicted in all eyes. Macroscopic in-plane strains were significantly higher in peripapillary region then in the mid-periphery. In contrast, the meso- and micro-scale strains at the collagen network and collagen fibril level were not significantly different between regions. The elastic response of the posterior human sclera can be characterized by the anisotropic architecture and crimp response of scleral collagen fibrils. The similar collagen fibril strains in the peripapillary and mid-peripheral regions support the notion that the scleral collagen architecture including the circumpapillary ring of collagen fibrils evolved to establish optimal load bearing conditions at the collagen fibril level.


Biomechanics and Modeling in Mechanobiology | 2014

Age-related changes in human peripapillary scleral strain

Massimo A. Fazio; Rafael Grytz; Jeffrey S. Morris; Luigi Bruno; Stuart K. Gardiner; Christopher A. Girkin; J. Crawford Downs

To test the hypothesis that mechanical strain in the posterior human sclera is altered with age, 20 pairs of normal eyes from human donors aged 20 to 90 years old were inflation tested within 48-h postmortem. The intact posterior scleral shells were pressurized from 5 to 45 mmHg, while the full-field three-dimensional displacements of the scleral surface were measured using laser speckle interferometry. The full strain tensor of the outer scleral surface was calculated directly from the displacement field. Mean maximum principal (tensile) strain was computed for eight circumferential sectors (


Investigative Ophthalmology & Visual Science | 2014

Age- and Race-Related Differences in Human Scleral Material Properties

Rafael Grytz; Massimo A. Fazio; Vincent Libertiaux; Luigi Bruno; Stuart K. Gardiner; Christopher A. Girkin; J. Crawford Downs


Investigative Ophthalmology & Visual Science | 2012

Regional Variations in Mechanical Strain in the Posterior Human Sclera

Massimo A. Fazio; Rafael Grytz; Luigi Bruno; Michaël J. A. Girard; Stuart K. Gardiner; Christopher A. Girkin; J. Crawford Downs

45^{\circ }


Investigative Ophthalmology & Visual Science | 2014

Human Scleral Structural Stiffness Increases More Rapidly With Age in Donors of African Descent Compared to Donors of European Descent

Massimo A. Fazio; Rafael Grytz; Jeffrey S. Morris; Luigi Bruno; Christopher A. Girkin; J. Crawford Downs


Computer Methods in Biomechanics and Biomedical Engineering | 2013

A forward incremental prestressing method with application to inverse parameter estimations and eye-specific simulations of posterior scleral shells

Rafael Grytz; J. Crawford Downs

45∘ wide) within the peripapillary and mid-peripheral regions surrounding the optic nerve head (ONH). To estimate the age-related changes in scleral strain, results were fit using a functional mixed effects model that accounts for intradonor variability and spatial autocorrelation. Mechanical tensile strain in the peripapillary sclera is significantly higher than the strain in the sclera farther away from the ONH. Overall, strains in the peripapillary sclera decrease significantly with age. Sectorially, peripapillary scleral tensile strains in the nasal sectors are significantly higher than the temporal sectors at younger ages, but the sectorial strain pattern reverses with age, and the temporal sectors exhibited the highest tensile strains in the elderly. Overall, peripapillary scleral structural stiffness increases significantly with age. The sectorial pattern of peripapillary scleral strain reverses with age, which may predispose adjacent regions of the lamina cribrosa to biomechanical insult. The pattern and age-related changes in sectorial peripapillary scleral strain closely match those seen in disk hemorrhages and neuroretinal rim area measurement change rates reported in previous studies of normal human subjects.


Investigative Ophthalmology & Visual Science | 2015

Changing Material Properties of the Tree Shrew Sclera During Minus Lens Compensation and Recovery

Rafael Grytz; John T. Siegwart

PURPOSE We tested the hypothesis that there are age- and race-related differences in posterior scleral material properties, using eyes from human donors of European (20-90 years old, n = 40 eyes) and African (23-74 years old, n = 22 eyes) descent. METHODS Inflation tests on posterior scleral shells were performed while full-field, three-dimensional displacements were recorded using laser speckle interferometry. Scleral material properties were fit to each eye using a microstructure-based constitutive formulation that incorporates the collagen fibril crimp and the local anisotropic collagen architecture. The effects of age and race were estimated using Generalized Estimating Equations, while accounting for intradonor correlations. RESULTS The shear modulus significantly increased (P = 0.038) and collagen fibril crimp angle significantly decreased with age (P = 0.002). Donors of African descent exhibited a significantly higher shear modulus (P = 0.019) and showed evidence of a smaller collagen fibril crimp angle (P = 0.057) compared to donors of European descent. The in-plane strains in the peripapillary sclera were significantly lower with age (P < 0.015) and African ancestry (P < 0.015). CONCLUSIONS The age- and race-related differences in scleral material properties result in a loss of scleral compliance due to a higher shear stiffness and a lower level of stretch at which the collagen fibrils uncrimp. The loss of compliance should lead to larger high frequency IOP fluctuations and changes in the optic nerve head (ONH) biomechanical response in the elderly and in persons of African ancestry, and may contribute to the higher susceptibility to glaucoma in these at-risk populations.

Collaboration


Dive into the Rafael Grytz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher A. Girkin

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Massimo A. Fazio

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Luigi Bruno

University of Calabria

View shared research outputs
Top Co-Authors

Avatar

Vincent Libertiaux

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Levy

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Michaël J. A. Girard

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Ian A. Sigal

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge