Rafael J. Bergillos
University of Granada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rafael J. Bergillos.
Water Resources Research | 2016
Rafael J. Bergillos; Cristobal Rodriguez-Delgado; Agustín Millares; Miguel Ortega-Sánchez; Miguel A. Losada
This work addresses the effects of the construction of a reservoir 19 km from the mouth on the dynamics of the Guadalfeo delta (southern Spain), a Mediterranean delta in a semiarid and high-mountain basin. The sediment volume transported as bed load and accumulated in the delta was estimated under two scenarios by means of a calibrated hydrological model: a managed scenario, considering the flows drained by the dam, and an unmanaged scenario, considering the absence of such infrastructure. Bathymetric and topographic measurements were analyzed and correlated with the fluvial and maritime forcing agents. Results indicate that the reservoir has significantly modified the dynamics downstream: the coast has lost almost 0.3 hm3 of sediments since the entry into operation of the dam, generating a 1.4 km coastline retreat around the mouth, with a maximum retreat of 87 m (92% of the initial). The beach profile decreased by up to 820 m2, whereas the average decrease around the mouth was equal to 214 m2. Under unmanaged conditions, more than 2 hm3 of bed load would have reached the coast. Based on the results, three new management scenarios of flows drained by the dam, in combination with bypassed sediment from the reservoir, were proposed to prevent more severe consequences in the delta and the silting of the reservoir. The proposed methodology for new management scenarios can be extended to other worldwide deltas, especially to those in semiarid and Mediterranean basins, and it represents an advanced tool for decision making.
Science of The Total Environment | 2018
Rafael J. Bergillos; Alejandro López-Ruiz; Daniel Principal-Gómez; Miguel Ortega-Sánchez
Many deltas across the globe are retreating, and nearby beaches are undergoing strong erosion as a result. Among soft and prompt solutions, nourishments are the most heavily used. This paper presents an integrated methodology to forecast the efficiency of nourishment strategies by means of wave climate simulations, wave propagations with downscaling techniques, computation of longshore sediment transport rates and application of the one-line model. It was applied to an eroding deltaic beach (Guadalfeo, southern Spain), where different scenarios as a function of the nourished coastline morphology, input volume and grain size were tested. For that, the evolution of six scenarios of coastline geometry over a two-year period (lifetime of nourishment projects at the study site) was modelled and the uncertainty of the predictions was also quantified through Monte Carlo techniques. For the most efficient coastline shape in terms of gained dry beach area, eight sub-scenarios with different nourished volumes were defined and modelled. The results indicate that an input volume around 460,000m3 is the best strategy since nourished morphologies with higher volumes are more exposed to the prevailing storm directions, inducing less efficient responses. After setting the optimum coastline morphology and input sediment volume, eleven different nourished grain sizes were modelled; the most efficient coastline responses were obtained for sediment sizes greater than 0.01m. The availability of these sizes in the sediment accumulated upstream of a dam in the Guadalfeo River basin allows for the conclusion that this alternative would not only mitigate coastal erosion problems but also sedimentation issues in the reservoir. The methodology proposed in this work is extensible to other coastal areas across the world and can be helpful to support the decision-making process of artificial nourishment projects and other environmental management strategies.
Science of The Total Environment | 2018
Pedro Magaña; Rafael J. Bergillos; Juan Del-Rosal-Salido; Miguel Á. Reyes-Merlo; Pilar Díaz-Carrasco; Miguel Ortega-Sánchez
This paper presents a software platform to compute the total water level, one of the key variables for the environmental management of coastal zones. The platform integrates six modules: (1) simulation of deep-water wave variables, storm surge and river flow; (2) wave downscaling; (3) wave propagation; (4) contribution of the river discharge; (5) astronomical tide; and (6) total water level. It was applied to three case studies in southern Spain. The first case study consisted of designing the extension of a fluvial marina in a highly dynamic area (Guadalete estuary, Cádiz), and the maximum number of floating docks to avoid flooding events was obtained. The second case study involved calculating the operation conditions for navigation purposes in an inlet with sedimentation problems (Punta Umbría, Huelva), and a relationship between the percentage of operation hours and the dredged volume was obtained. The third case study consisted of estimating the number of overwash events as a function of the height of the berm on a deltaic beach with erosion issues (Guadalfeo, Granada), and a simple design curve to help managers during the decision-making process of artificial nourishment projects was provided. These results highlight the potential of the developed software, whose methodology is feasibly extensible to other coastal areas worldwide, to help managers handle a wide range of environmental problems related to the total water level. This is especially relevant due to the expected sea level rise in the coming years.
Science of The Total Environment | 2018
Cristobal Rodriguez-Delgado; Rafael J. Bergillos; Miguel Ortega-Sánchez; G. Iglesias
The impacts of wave farms (arrays of wave energy converters, or WECs) on the nearshore must be fully understood for wave technology to develop and thus contribute to a sustainable, carbon-free energy mix in the near future. The objective of this work is to investigate the role played by the farm layout on the wave propagation patterns leewards and the implications for longshore sediment transport (LST) and shoreline evolution on a gravel-dominated deltaic coast. Changes in wave propagation in four scenarios, corresponding to as many wave farm layouts, are computed by means of a spectral numerical model (Delft3D-WAVE) under (i) low-energy and storm conditions, and (ii) westerly and easterly waves - the two prevailing wave directions. On this basis, sediment transport rates are computed and changes in the shoreline position assessed using a one-line model. To quantify the impact of the wave farm on the nearshore wave conditions, sediment transport and shoreline, we define three ad hoc indicators: the non-dimensional wave height reduction, the non-dimensional LST rate reduction and the non-dimensional shoreline advance. Significant wave heights decrease in the lee of the wave farm, with the consequent reduction in LST rates. As a result, the dry beach area increases in every scenario under both westerly and easterly waves. We find that case studies with the WECs arranged on fewer rows but covering a greater stretch of coastline provide better coastal protection. These results confirm that wave farms can be used not only to generate carbon-free energy but also to protect gravel-dominated coasts.
Science of The Total Environment | 2018
Cristobal Rodriguez-Delgado; Rafael J. Bergillos; Miguel Ortega-Sánchez; G. Iglesias
For wave energy to become a fully-fledged renewable and thus contribute to the much-needed decarbonisation of the energy mix, the effects of wave farms (arrays of wave energy converters) on coastal systems must be addressed. The objective of this work is to investigate the effects of wave farms on the longshore sediment transport and shoreline evolution of a gravel-dominated beach and, in particular, its sensitivity to the longshore position of the farm based on eight scenarios. Nearshore wave propagation patterns are computed by means of a spectral wave propagation model (SWAN), variations in sediment transport rates induced by the farm are calculated, and a one-line model is applied to determine the shoreline position and dry beach area. The significant wave height at breaking is reduced in the lee of the wave farm, dampening sediment transport. We find that changes in the dry beach area induced by the wave farm are highly sensitive to its alongshore position, and may result in: (i) erosion relative to the baseline scenario (without wave farm) in three of the eight scenarios, (ii) accretion in three other scenarios, and (iii) negligible effects in the remaining two. These results prove that the alongshore position of the wave farm controls the response of the beach to the extent that it may shift from accretionary to erosionary, and provide evidence of its effectiveness in countering erosion if appropriately positioned. This effectiveness opens up the possibility of using wave farms not only to generate carbon-free energy but also to manage coastal erosion, thus strengthening the case for the development of wave energy.
Science of The Total Environment | 2019
Cristobal Rodriguez-Delgado; Rafael J. Bergillos; G. Iglesias
In dual wave farms, i.e., arrays of wave energy converters (WECs) with a dual function - generation of renewable power and mitigation of coastal erosion - the spacing between the WECs is a fundamental design parameter. The present research has the objective of establishing how this parameter affects the shoreline evolution behind the array and, on this basis, to propose and apply a method to determine the optimum spacing for coastal protection. The method is demonstrated on a beach subjected to severe erosion. Five case studies are considered: four with different inter-WEC spacings, and one without the wave farm (baseline). A spectral wave propagation model is applied to analyse the variations in significant wave height behind the WEC array. Longshore sediment transport rates are calculated, and a shoreline model is applied. We find that in all the case studies the dry beach area is greater than in the baseline (no farm) case study, which proves the capacity of the dual WEC array to mitigate the erosive trends of the system. Importantly, we obtain that the inter-WEC spacing plays a fundamental role in the evolution of the shoreline and, consequently, in the effectiveness of the WEC array for coastal protection. The case studies with intermediate spacings yield the best performance in terms of dry beach area. More generally, the benefits of dual wave farms in terms of protection of coastal properties and infrastructure, and the ensuing savings in conventional coastal defence measures (coastal structures, beach nourishment, etc.) contribute to the development of wave energy by enhancing its economic viability. The methodology presented in this paper can be used to optimize the design of dual wave farms elsewhere.
Archive | 2018
Antonio Moñino; Encarnación Medina-López; Rafael J. Bergillos; Alistair Borthwick; Miguel Ortega-Sánchez
This chapter presents a numerical model to analyse the effects of changes in the bedforms morphology on Oscillating Water Column (OWC) wave energy devices. The model was developed in FLUENT\(^{\circledR }\) and based on the Actuator Disk Model theory to simulate the turbine performance. The seabed forms were reproduced with the morphodynamic model XBeach-G for a series of characteristic sea states in Playa Granada (southern Spain). These bedforms were used as input bed geometries in FLUENT\(^{\circledR }\) and compared with a hypothetical flat seabed to analyse the effects of changes in bed level on the OWC performance. Results of the simulated sea states reveal the influence of the seabed morphology in the power take–off performance, affecting the relationship between pressure drop and air flow rate through the turbine. Energy dissipation was found to be directly dependent on the bedforms unit volume. This lead to lower mean efficiencies for the cases with evolved morphologies (up to \(15\%\)) compared to those obtained for the hypothetical flat cases (\(19\%\)). The effects of seabed formations on the power take–off performance presented in this chapter can be of interest in planning control strategies for OWC devices.
Archive | 2018
Antonio Moñino; Encarnación Medina-López; Rafael J. Bergillos; Alistair Borthwick; Miguel Ortega-Sánchez
Oscillating Water Column (OWC) devices are usually modelled as simple systems containing ideal, dry air. However, high humidity levels are likely to occur in a prototype device open to the sea, particularly in warm climates such as prevail in the lower latitudes. In this chapter, a real gas model is implemented to take into account humidity variations inside an OWC chamber. Using a modified adiabatic index, theoretical expressions are derived for the thermodynamic state variables including enthalpy, entropy and specific heat. The model is validated against experimental data, and shown to provide better agreement than obtained using the ideal gas assumption. By calculating real air flow in an OWC it is shown that the mechanical efficiency reduces and the flow phase alters with respect to the ideal gas case. Accurate prediction of efficiency is essential for the optimal design and management of OWC wave energy converters.
Archive | 2018
Antonio Moñino; Encarnación Medina-López; Rafael J. Bergillos; Alistair Borthwick; Miguel Ortega-Sánchez
Oscillating Water Column (OWC) are devices for wave energy extraction equipped with turbines for energy conversion. The purpose of the present chapter is to study the thermodynamic of a real gas flow through the turbine and its differences with respect to the ideal gas hypothesis, with the final goal to be applied to OWC systems. The effect of moisture in the air chamber of the OWC entails variations on the atmospheric conditions near the turbine, modifying its performance and efficiency. In this chapter the influence of humid air in the performance of the turbine is studied. Experimental work is carried out and a real gas model is asserted, in order to take a first approach to quantify the extent of influence of the air-water vapour mixture in the turbine performance. The application of a real gas model and the experimental study confirmed the deviations of the turbine performance from the expected values depending on flow rate, moisture and temperature.
Archive | 2018
Antonio Moñino; Encarnación Medina-López; Rafael J. Bergillos; Alistair Borthwick; Miguel Ortega-Sánchez
Many worldwide coasts are under erosion with climate projections indicating that damages will rise in future decades. Specifically, deltaic coasts are highly vulnerable systems due to their low-lying characteristics. This chapter investigates the role of wave energy converter (WEC) farms on the protection of an eroding gravel-dominated deltaic coast (Guadalfeo, southern Spain). Eight scenarios with different alongshore locations of the wave farm were defined and results were compared with the present (no farm) configuration of the coast. Assuming that storm conditions drive the main destruction to the coast, we analysed the impact of the most energetic storm conditions and quantified the effects of the location of the farm. Significant wave heights in the lee of the farm were calculated by means of a calibrated wave propagation model (Delft3D-Wave); whereas wave run-up and morphological changes in eight beach profiles were quantified by means of a calibrated morphodynamic model (XBeach-G). The farm induces average reductions in significant wave heights at 10 m water depth and wave run-up on the coast down to 18.3% and 10.6%, respectively, in the stretch of beach most affected by erosion problems (Playa Granada). Furthermore, the erosion of the beach reduces by 44.5% in Playa Granada and 23.3% in the entire deltaic coast. Combining these results with previous works at the study site allowed selecting the best alternative of wave farm location based not only on coastal protection but also on energetic performance criteria. This chapter, whose methodology is feasibly extensible to other coasts worldwide, provides insights into the role of the alongshore location of WEC farms on wave propagation, run-up and morphological storm response of deltaic coasts.