Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rafael J. Yáñez-Muñoz is active.

Publication


Featured researches published by Rafael J. Yáñez-Muñoz.


Nature Medicine | 2006

Effective gene therapy with nonintegrating lentiviral vectors

Rafael J. Yáñez-Muñoz; Kamaljit S. Balaggan; Angus MacNeil; Steven J. Howe; Manfred Schmidt; Alexander J. Smith; Prateek K. Buch; Robert E. MacLaren; Patrick N. Anderson; Susie E. Barker; Yanai Duran; Cynthia C. Bartholomae; Christof von Kalle; John R. Heckenlively; Christine Kinnon; Robin R. Ali; Adrian J. Thrasher

Retroviral and lentiviral vector integration into host-cell chromosomes carries with it a finite chance of causing insertional mutagenesis. This risk has been highlighted by the induction of malignancy in mouse models, and development of lymphoproliferative disease in three individuals with severe combined immunodeficiency–X1 (refs. 2,3). Therefore, a key challenge for clinical therapies based on retroviral vectors is to achieve stable transgene expression while minimizing insertional mutagenesis. Recent in vitro studies have shown that integration-deficient lentiviral vectors can mediate stable transduction. With similar vectors, we now show efficient and sustained transgene expression in vivo in rodent ocular and brain tissues. We also show substantial rescue of clinically relevant rodent models of retinal degeneration. Therefore, the high efficiency of gene transfer and expression mediated by lentiviruses can be harnessed in vivo without a requirement for vector integration. For therapeutic application to postmitotic tissues, this system substantially reduces the risk of insertional mutagenesis.


Molecular Therapy | 2009

Integration-deficient lentiviral vectors: a slow coming of age.

Klaus Wanisch; Rafael J. Yáñez-Muñoz

Lentiviral vectors are very efficient at transducing dividing and quiescent cells, which makes them highly useful tools for genetic analysis and gene therapy. Traditionally this efficiency was considered dependent on provirus integration in the host cell genome; however, recent results have challenged this view. So called integration-deficient lentiviral vectors (IDLVs) can be produced through the use of integrase mutations that specifically prevent proviral integration, resulting in the generation of increased levels of circular vector episomes in transduced cells. These lentiviral episomes lack replication signals and are gradually lost by dilution in dividing cells, but are stable in quiescent cells. Compared to integrating lentivectors, IDLVs have a greatly reduced risk of causing insertional mutagenesis and a lower risk of generating replication-competent recombinants (RCRs). IDLVs can mediate transient gene expression in proliferating cells, stable expression in nondividing cells in vitro and in vivo, specific immune responses, RNA interference, homologous recombination (gene repair, knock-in, and knock-out), site-specific recombination, and transposition. IDLVs can be converted into replicating episomes, suggesting that if a clinically applicable system can be developed they would also become highly appropriate for stable transduction of proliferating tissues in therapeutic applications.


Nature Medicine | 2009

Comprehensive genomic access to vector integration in clinical gene therapy.

Richard Gabriel; Ralph Eckenberg; Anna Paruzynski; Cynthia C. Bartholomae; Ali Nowrouzi; Anne Arens; Steven J. Howe; Claudia Cattoglio; Wei Wang; Katrin Faber; Kerstin Schwarzwaelder; Romy Kirsten; Annette Deichmann; Claudia R. Ball; Kamaljit S. Balaggan; Rafael J. Yáñez-Muñoz; Robin R. Ali; H. Bobby Gaspar; Luca Biasco; Alessandro Aiuti; Daniela Cesana; Eugenio Montini; Luigi Naldini; Odile Cohen-Haguenauer; Fulvio Mavilio; Aj Thrasher; Hanno Glimm; Christof von Kalle; William Saurin; Manfred Schmidt

Retroviral vectors have induced subtle clonal skewing in many gene therapy patients and severe clonal proliferation and leukemia in some of them, emphasizing the need for comprehensive integration site analyses to assess the biosafety and genomic pharmacokinetics of vectors and clonal fate of gene-modified cells in vivo. Integration site analyses such as linear amplification–mediated PCR (LAM-PCR) require a restriction digest generating unevenly small fragments of the genome. Here we show that each restriction motif allows for identification of only a fraction of all genomic integrants, hampering the understanding and prediction of biological consequences after vector insertion. We developed a model to define genomic access to the viral integration site that provides optimal restriction motif combinations and minimizes the percentage of nonaccessible insertion loci. We introduce a new nonrestrictive LAM-PCR approach that has superior capabilities for comprehensive unbiased integration site retrieval in preclinical and clinical samples independent of restriction motifs and amplification inefficiency.


Molecular and Cellular Neuroscience | 2008

A diacylglycerol lipase-CB2 cannabinoid pathway regulates adult subventricular zone neurogenesis in an age-dependent manner

Maria B. Goncalves; Philipp Suetterlin; Ping K. Yip; Francisco Molina-Holgado; Deborah J. Walker; Madeleine J. Oudin; Marc P. Zentar; Steven M. Pollard; Rafael J. Yáñez-Muñoz; Gareth Williams; Frank S. Walsh; Menelas N. Pangalos; Patrick Doherty

The subventricular zone (SVZ) is a major site of neurogenesis in the adult. We now show that ependymal and proliferating cells in the adult mouse SVZ express diacylglycerol lipases (DAGLs), enzymes that synthesise a CB1/CB2 cannabinoid receptor ligand. DAGL and CB2 antagonists inhibit the proliferation of cultured neural stem cells, and the proliferation of progenitor cells in young animals. Furthermore, CB2 agonists stimulate progenitor cell proliferation in vivo, with this effect being more pronounced in older animals. A similar response was seen with a fatty acid amide hydrolase (FAAH) inhibitor that limits degradation of endocannabinoids. The effects on proliferation were mirrored in changes in the number of neuroblasts migrating from the SVZ to the olfactory bulb (OB). In this context, CB2 antagonists reduced the number of newborn neurons appearing in the OB in the young adult animals while CB2 agonists stimulated this in older animals. These data identify CB2 receptor agonists and FAAH inhibitors as agents that can counteract the naturally observed decline in adult neurogenesis that is associated with ageing.


The Journal of Neuroscience | 2014

Large-Scale Chondroitin Sulfate Proteoglycan Digestion with Chondroitinase Gene Therapy Leads to Reduced Pathology and Modulates Macrophage Phenotype following Spinal Cord Contusion Injury

Katalin Bartus; Nicholas D. James; Athanasios Didangelos; Karen D. Bosch; Joost Verhaagen; Rafael J. Yáñez-Muñoz; John Rogers; Bernard L. Schneider; Elizabeth M. Muir; Elizabeth J. Bradbury

Chondroitin sulfate proteoglycans (CSPGs) inhibit repair following spinal cord injury. Here we use mammalian-compatible engineered chondroitinase ABC (ChABC) delivered via lentiviral vector (LV-ChABC) to explore the consequences of large-scale CSPG digestion for spinal cord repair. We demonstrate significantly reduced secondary injury pathology in adult rats following spinal contusion injury and LV-ChABC treatment, with reduced cavitation and enhanced preservation of spinal neurons and axons at 12 weeks postinjury, compared with control (LV-GFP)-treated animals. To understand these neuroprotective effects, we investigated early inflammatory changes following LV-ChABC treatment. Increased expression of the phagocytic macrophage marker CD68 at 3 d postinjury was followed by increased CD206 expression at 2 weeks, indicating that large-scale CSPG digestion can alter macrophage phenotype to favor alternatively activated M2 macrophages. Accordingly, ChABC treatment in vitro induced a significant increase in CD206 expression in unpolarized monocytes stimulated with conditioned medium from spinal-injured tissue explants. LV-ChABC also promoted the remodelling of specific CSPGs as well as enhanced vascularity, which was closely associated with CD206-positive macrophages. Neuroprotective effects of LV-ChABC corresponded with improved sensorimotor function, evident as early as 1 week postinjury, a time point when increased neuronal survival correlated with reduced apoptosis. Improved function was maintained into chronic injury stages, where improved axonal conduction and increased serotonergic innervation were also observed. Thus, we demonstrate that ChABC gene therapy can modulate secondary injury processes, with neuroprotective effects that lead to long-term improved functional outcome and reveal novel mechanistic evidence that modulation of macrophage phenotype may underlie these effects.


European Journal of Neuroscience | 2006

Accumulation of the inhibitory receptor EphA4 may prevent regeneration of corticospinal tract axons following lesion

Jez Fabes; Patrick N. Anderson; Rafael J. Yáñez-Muñoz; Adrian J. Thrasher; Caroline H. Brennan; Stephen R. Bolsover

We have examined the expression of Eph receptors and their ephrin ligands in adult rat spinal cord before and after lesion. Neurons in adult motor cortex express EphA4 mRNA, but the protein is undetectable in uninjured corticospinal tract. In contrast, after dorsal column hemisection EphA4 protein accumulates in proximal axon stumps. One of the ligands for EphA4, ephrinB2, is normally present in the grey matter flanking the corticospinal tract but after injury is markedly up‐regulated in astrocytes in the glial scar. The result is that, after a lesion, corticospinal tract axons bear high levels of EphA4 and are surrounded to front and sides by a continuous basket of cognate inhibitory ephrin ligand. We suggest that a combination of EphA4 accumulation in the injured axons and up‐regulation of ephrinB2 in the surrounding astrocytes leads to retraction of corticospinal axons and inhibition of their regeneration in the weeks after a spinal lesion.


Nucleic Acids Research | 2012

Chromosomal context and epigenetic mechanisms control the efficacy of genome editing by rare-cutting designer endonucleases

Fayza Daboussi; Mikhail Zaslavskiy; Laurent Poirot; Mariana Loperfido; Agnès Gouble; Valérie Guyot; Sophie Leduc; Roman Galetto; Sylvestre Grizot; Danusia Oficjalska; Christophe Perez; Fabien Delacôte; Aurélie Dupuy; Isabelle Chion-Sotinel; Diane Le Clerre; Céline Lebuhotel; Olivier Danos; Frédéric Lemaire; Kahina Oussedik; Frédéric Cédrone; Jean-Charles Epinat; Julianne Smith; Rafael J. Yáñez-Muñoz; George Dickson; Linda Popplewell; Taeyoung Koo; Thierry Vandendriessche; Marinee K. Chuah; Aymeric Duclert; Philippe Duchateau

The ability to specifically engineer the genome of living cells at precise locations using rare-cutting designer endonucleases has broad implications for biotechnology and medicine, particularly for functional genomics, transgenics and gene therapy. However, the potential impact of chromosomal context and epigenetics on designer endonuclease-mediated genome editing is poorly understood. To address this question, we conducted a comprehensive analysis on the efficacy of 37 endonucleases derived from the quintessential I-CreI meganuclease that were specifically designed to cleave 39 different genomic targets. The analysis revealed that the efficiency of targeted mutagenesis at a given chromosomal locus is predictive of that of homologous gene targeting. Consequently, a strong genome-wide correlation was apparent between the efficiency of targeted mutagenesis (≤0.1% to ∼6%) with that of homologous gene targeting (≤0.1% to ∼15%). In contrast, the efficiency of targeted mutagenesis or homologous gene targeting at a given chromosomal locus does not correlate with the activity of individual endonucleases on transiently transfected substrates. Finally, we demonstrate that chromatin accessibility modulates the efficacy of rare-cutting endonucleases, accounting for strong position effects. Thus, chromosomal context and epigenetic mechanisms may play a major role in the efficiency rare-cutting endonuclease-induced genome engineering.


Journal of Neuroscience Methods | 2011

Lentiviral vectors express chondroitinase ABC in cortical projections and promote sprouting of injured corticospinal axons

Rong-Rong Zhao; Elizabeth M. Muir; João Nuno Alves; Hannah Rickman; Anna Y. Allan; Jessica C. F. Kwok; Kasper C. D. Roet; Joost Verhaagen; Bernard L. Schneider; Jean-Charles Bensadoun; Sherif G. Ahmed; Rafael J. Yáñez-Muñoz; Roger J. Keynes; James W. Fawcett; John Rogers

Highlights ► Lentiviral vectors can transduce neurons and glia to secrete chondroitinase. ► The active enzyme is secreted from long-distance axon projections from the cerebral cortex. ► Chondroitinase transduction promotes preservation and sprouting of damaged corticospinal axons.


Gene Therapy | 2012

Corticospinal tract transduction: a comparison of seven adeno-associated viral vector serotypes and a non-integrating lentiviral vector

Thomas H. Hutson; Joost Verhaagen; Rafael J. Yáñez-Muñoz; Lawrence Moon

The corticospinal tract (CST) is extensively used as a model system for assessing potential therapies to enhance neuronal regeneration and functional recovery following spinal cord injury (SCI). However, efficient transduction of the CST is challenging and remains to be optimised. Recombinant adeno-associated viral (AAV) vectors and integration-deficient lentiviral vectors are promising therapeutic delivery systems for gene therapy to the central nervous system (CNS). In the present study the cellular tropism and transduction efficiency of seven AAV vector serotypes (AAV1, 2, 3, 4, 5, 6, 8) and an integration-deficient lentiviral vector were assessed for their ability to transduce corticospinal neurons (CSNs) following intracortical injection. AAV1 was identified as the optimal serotype for transducing cortical and CSNs with green fluorescent protein (GFP) expression detectable in fibres projecting through the dorsal CST (dCST) of the cervical spinal cord. In contrast, AAV3 and AAV4 demonstrated a low efficacy for transducing CNS cells and AAV8 presented a potential tropism for oligodendrocytes. Furthermore, it was shown that neither AAV nor lentiviral vectors generate a significant microglial response. The identification of AAV1 as the optimal serotype for transducing CSNs should facilitate the design of future gene therapy strategies targeting the CST for the treatment of SCI.


Human Gene Therapy | 2013

Gene Correction of a Duchenne Muscular Dystrophy Mutation by Meganuclease-Enhanced Exon Knock-In

Linda Popplewell; Taeyoung Koo; Xavier Leclerc; Aymeric Duclert; Kamel Mamchaoui; Agnès Gouble; Vincent Mouly; Thomas Voit; Frédéric Cédrone; Olga Isman; Rafael J. Yáñez-Muñoz; George Dickson

Duchenne muscular dystrophy (DMD) is a severe inherited, muscle-wasting disorder caused by mutations in the DMD gene. Gene therapy development for DMD has concentrated on vector-based DMD minigene transfer, cell-based gene therapy using genetically modified adult muscle stem cells or healthy wild-type donor cells, and antisense oligonucleotide-induced exon-skipping therapy to restore the reading frame of the mutated DMD gene. This study is an investigation into DMD gene targeting-mediated correction of deletions in human patient myoblasts using a target-specific meganuclease (MN) and a homologous recombination repair matrix. The MN was designed to cleave within DMD intron 44, upstream of a deletion hotspot, and integration-competent lentiviral vectors expressing the nuclease (LVcMN) were generated. MN western blotting and deep gene sequencing for LVcMN-induced non-homologous end-joining InDels (microdeletions or microinsertions) confirmed efficient MN expression and activity in transduced DMD myoblasts. A homologous repair matrix carrying exons 45-52 (RM45-52) was designed and packaged into integration-deficient lentiviral vectors (IDLVs; LVdRM45-52). After cotransduction of DMD myoblasts harboring a deletion of exons 45 to 52 with LVcMN and LVdRM45-52 vectors, targeted knock-in of the RM45-52 region in the correct location in DMD intron 44, and expression of full-length, correctly spliced wild-type dystrophin mRNA containing exons 45-52 were observed. This work demonstrates that genome surgery on human DMD gene mutations can be achieved by MN-induced locus-specific genome cleavage and homologous recombination knock-in of deleted exons. The feasibility of human DMD gene repair in patient myoblasts has exciting therapeutic potential.

Collaboration


Dive into the Rafael J. Yáñez-Muñoz's collaboration.

Top Co-Authors

Avatar

Ping K. Yip

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Steven J. Howe

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin R. Ali

UCL Institute of Ophthalmology

View shared research outputs
Researchain Logo
Decentralizing Knowledge