Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rafael Schröder is active.

Publication


Featured researches published by Rafael Schröder.


Brain Research | 2010

Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies

Fernanda Martins Lopes; Rafael Schröder; Mario Luiz Conte da Frota Junior; Alfeu Zanotto-Filho; Carolina Beatriz Müller; André Simões Pires; Rosalva Thereza Meurer; Gabriela Delevati Colpo; Daniel Pens Gelain; Flávio Kapczinski; José Cláudio Fonseca Moreira; Marilda da Cruz Fernandes; Fábio Klamt

The molecular mechanisms underlying the cellular lost found in the nigrostriatal pathway during the progression of Parkinsons disease (PD) are not completely understood. Human neuroblastoma cell line SH-SY5Y challenged with 6-hydroxydopamine (6-OHDA) has been widely used as an in vitro model for PD. Although this cell line differentiates to dopaminergic neuron-like cells in response to low serum and retinoic acid (RA) treatment, there are few studies investigating the differences between proliferative and RA-differentiated SH-SY5Y cells. Here we evaluate morphological and biochemical changes which occurs during the differentiation of SH-SY5Y cells, and their responsiveness to 6-OHDA toxicity. Exponentially growing SH-SY5Y cells were maintained with DMEM/F12 medium plus 10% of fetal bovine serum (FBS). Differentiation was triggered by the combination of 10 microM RA plus 1% of FBS during 4, 7 and 10 days in culture. We found that SH-SY5Y cells differentiated for 7 days show an increase immunocontent of several relevant neuronal markers with the concomitant decrease in non-differentiated cell marker. Moreover, cells became two-fold more sensitive to 6-OHDA toxicity during the differentiation process. Time course experiments showed loss of mitochondrial membrane potential triggered by 6-OHDA (mitochondrial dysfunction parameter), which firstly occurs in proliferative than neuron-like differentiated cells. This finding could be related to the increase in the immunocontent of the neuroprotective protein DJ-1 during differentiation. Our data suggest that SH-SY5Y cells differentiated by 7 days with the protocol described here represent a more suitable experimental model for studying the molecular and cellular mechanisms underlying the pathophysiology of PD.


Biochemical Pharmacology | 2011

NFκB inhibitors induce cell death in glioblastomas

Alfeu Zanotto-Filho; Elizandra Braganhol; Rafael Schröder; Luís Henrique Trentin de Souza; Rodrigo Juliani Siqueira Dalmolin; Matheus Augusto de Bittencourt Pasquali; Daniel Pens Gelain; Ana Maria Oliveira Battastini; José Cláudio Fonseca Moreira

Identification of novel target pathways in glioblastoma (GBM) remains critical due to poor prognosis, inefficient therapies and recurrence associated with these tumors. In this work, we evaluated the role of nuclear-factor-kappa-B (NFκB) in the growth of GBM cells, and the potential of NFκB inhibitors as antiglioma agents. NFκB pathway was found overstimulated in GBM cell lines and in tumor specimens compared to normal astrocytes and healthy brain tissues, respectively. Treatment of a panel of established GBM cell lines (U138MG, U87, U373 and C6) with pharmacological NFκB inhibitors (BAY117082, parthenolide, MG132, curcumin and arsenic trioxide) and NFκB-p65 siRNA markedly decreased the viability of GBMs as compared to inhibitors of other signaling pathways such as MAPKs (ERK, JNK and p38), PKC, EGFR and PI3K/Akt. In addition, NFκB inhibitors presented a low toxicity to normal astrocytes, indicating selectivity to cancerous cells. In GBMs, mitochondrial dysfunction (membrane depolarization, bcl-xL downregulation and cytochrome c release) and arrest in the G2/M phase were observed at the early steps of NFκB inhibitors treatment. These events preceded sub-G1 detection, apoptotic body formation and caspase-3 activation. Also, NFκB was found overstimulated in cisplatin-resistant C6 cells, and treatment of GBMs with NFκB inhibitors overcame cisplatin resistance besides potentiating the effects of the chemotherapeutics, cisplatin and doxorubicin. These findings support NFκB as a potential target to cell death induction in GBMs, and that the NFκB inhibitors may be considered for in vivo testing on animal models and possibly on GBM therapy.


Journal of Nutritional Biochemistry | 2012

The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma.

Alfeu Zanotto-Filho; Elizandra Braganhol; Maria Isabel Albano Edelweiss; Guilherme Antônio Behr; Rafael Fernandes Zanin; Rafael Schröder; André Simões-Pires; Ana Maria Oliveira Battastini; José Cláudio Fonseca Moreira

Previous studies suggested that curcumin is a potential agent against glioblastomas (GBMs). However, the in vivo efficacy of curcumin in gliomas remains not established. In this work, we examined the mechanisms underlying apoptosis, selectivity, efficacy and safety of curcumin from in vitro (U138MG, U87, U373 and C6 cell lines) and in vivo (C6 implants) models of GBM. In vitro, curcumin markedly inhibited proliferation and migration and induced cell death in liquid and soft agar models of GBM growth. Curcumin effects occurred irrespective of the p53 and PTEN mutational status of the cells. Interestingly, curcumin did not affect viability of primary astrocytes, suggesting that curcumin selectivity targeted transformed cells. In U138MG and C6 cells, curcumin decreased the constitutive activation of PI3K/Akt and NFkappaB survival pathways, down-regulated the antiapoptotic NFkappaB-regulated protein bcl-xl and induced mitochondrial dysfunction as a prelude to apoptosis. Cells developed an early G2/M cell cycle arrest followed by sub-G1 apoptosis and apoptotic bodies formation. Caspase-3 activation occurred in the p53-normal cell type C6, but not in the p53-mutant U138MG. Besides its apoptotic effect, curcumin also synergized with the chemotherapeutics cisplatin and doxorubicin to enhance GBM cells death. In C6-implanted rats, intraperitoneal curcumin (50 mg kg(-1) d(-1)) decreased brain tumors in 9/11 (81.8%) animals against 0/11 (0%) in the vehicle-treated group. Importantly, no evidence of tissue (transaminases, creatinine and alkaline phosphatase), metabolic (cholesterol and glucose), oxidative or hematological toxicity was observed. In summary, data presented here suggest curcumin as a potential agent for therapy of GBMs.


European Journal of Pharmaceutics and Biopharmaceutics | 2013

Curcumin-loaded lipid-core nanocapsules as a strategy to improve pharmacological efficacy of curcumin in glioma treatment

Alfeu Zanotto-Filho; Elizandra Braganhol; Rafael Schröder; Cláudia Melo de Oliveira; André Simões-Pires; Ana Maria Oliveira Battastini; Adriana Raffin Pohlmann; Silvia Stanisçuaski Guterres; Cassiano Mateus Forcelini; Ruy Carlos Ruver Beck; José Cláudio Fonseca Moreira

In this study, we developed curcumin-loaded lipid-core nanocapsules (C-LNCs) in an attempt to improve the antiglioma activity of this polyphenol. C-LNC showed nanotechnological properties such as nanometric mean size (196 nm), 100% encapsulation efficiency, polydispersity index below 0.1, and negative zeta potential. The in vitro release assays demonstrated a controlled release of curcumin from lipid-core nanocapsules. In C6 and U251MG gliomas, C-LNC promoted a biphasic delivery of curcumin: the first peak occurred early in the treatment (1-3h), whereas the onset of the second phase occurred after 48 h. In C6 cells, the cytotoxicity of C-LNC was comparable to non-encapsulated curcumin only after 96 h, whereas C-LNCs were more cytotoxic than non-encapsulated curcumin after 24h of incubation in U251MG. Induction of G2/M arrest and autophagy were observed in C-LNC as well as in free-curcumin treatments. In rats bearing C6 gliomas, C-LNC (1.5mg/kg/day, i.p.) decreased the tumor size and malignance and prolonged animal survival when compared to same dose of non-encapsulated drug. In addition, serum markers of tissue toxicity and histological parameters were not altered. Considered overall, the data suggest that the nanoencapsulation of curcumin in LNC is an important strategy to improve its pharmacological efficacy in the treatment of gliomas.


Cancer Letters | 2010

The pharmacological NFκB inhibitors BAY117082 and MG132 induce cell arrest and apoptosis in leukemia cells through ROS-mitochondria pathway activation

Alfeu Zanotto-Filho; Andrés Delgado-cañedo; Rafael Schröder; Matheus Becker; Fábio Klamt; José Cláudio Fonseca Moreira

A growing body of evidence suggests the inhibition of NFkappaB as a strategy to induce cell death in tumor cells. In this work, we evaluated the effects of the pharmacological NFkappaB inhibitors BAY117082 and MG132 on leukemia cells apoptosis. BAY117082 and MG132 presented potent apoptotic effects compared to inhibitors of MAPKs, EGFR, PI3K/Akt, PKC and PKA signaling pathways. Non-tumor peripheral blood cells were insensitive to BAY117082 and MG132 apoptotic effects. BAY117082 and MG132-induced apoptosis was dependent on their ability to increase ROS as a prelude to mitochondria membrane potential (MMP) depolarization, permeability transition pore opening and cytochrome c release. Antioxidants blocked MG132 and BAY117082 effects on ROS, MMP and cell death. Although apoptotic markers as phosphatidylserine externalization, chromatin condensation and sub-G1 were detected in BAY117082-treated cells, caspases activation did not occur and apoptosis was insensitive to caspase inhibitors, suggesting a caspase-independent mechanism. In contrast, MG132 induced classical apoptosis through ROS-mitochondria and subsequent caspase-9/caspase-3 activation. At sub-apoptotic concentrations, BAY117082 and MG132 arrested cells in G2/M phase of the cell cycle and blocked doxorubicin-induced NFkappaB, which sensitized doxorubicin-resistant cells. Data suggest that the NFkappaB inhibitors MG132 and BAY117082 are potential anti-leukemia agents.


International Scholarly Research Notices | 2013

Antinociceptive Activity and Redox Profile of the Monoterpenes (+)-Camphene, p-Cymene, and Geranyl Acetate in Experimental Models

Lucindo J. Quintans-Júnior; José Cláudio Fonseca Moreira; Matheus Augusto de Bittencourt Pasquali; Soheyla Mohd Rabie; André Simões Pires; Rafael Schröder; Thallita Kelly Rabelo; João Paulo Almeida dos Santos; Pollyana S.S. Lima; Sócrates Cabral de Holanda Cavalcanti; Adriano Antunes de Souza Araújo; Jullyana de Souza Siqueira Quintans; Daniel Pens Gelain

Objective. To evaluate antinocicpetive and redox properties of the monoterpenes (+)-camphene, p-cymene, and geranyl acetate in in vivo and in vitro experimental models. Methods. Evaluation of the in vitro antioxidant activity of (+)-camphene, p-cymene, and geranyl acetate using different free radical-generating systems and evaluation of antinociceptive actions by acetic acid-induced writhing and formalin-induced nociception tests in mice. Results. p-Cymene has the strongest antinociceptive effect, but (+)-camphene and geranyl acetate also present significant activity at high doses (200 mg/kg). (+)-Camphene had the strongest antioxidant effect in vitro at TBARS and TRAP/TAR assays and also had the highest scavenging activities against different free radicals, such as hydroxyl and superoxide radicals. Sodium nitroprussiate-derived NO production was enhanced by (+)-camphene. Geranyl acetate and p-cymene also presented some antioxidant effects, but with a varying profile according the free radical-generating system studied. Conclusion. (+)-Camphene, p-cymene, and geranyl acetate may present pharmacological properties related to inflammation and pain-related processes, being potentially useful for development of new therapeutic strategies, with limited possibilities for p-cymene and geranyl acetate.


Biochemical Pharmacology | 2009

The NFκB-mediated control of RS and JNK signaling in vitamin A-treated cells: Duration of JNK–AP-1 pathway activation may determine cell death or proliferation

Alfeu Zanotto-Filho; Daniel Pens Gelain; Rafael Schröder; Luis Fernando Souza; Matheus Augusto de Bittencourt Pasquali; Fábio Klamt; José Cláudio Fonseca Moreira

Nuclear factor kappa B (NFkappaB) has emerged as a crucial regulator of cell survival, playing important functions in cellular resistance to oxidants and chemotherapeutic agents. Recent studies showed that NFkappaB mediates cell survival through suppression of the accumulation of reactive species (RS) and a control of sustained activation of the Jun-N-terminal kinase (JNK) cascade. This work was undertaken in order to evaluate the role of NFkappaB in modulating the pro-oxidant effects of supplementation with vitamin A (retinol, ROH) in Sertoli cells, a major ROH physiological target. In this work, we reported that ROH treatment increases mitochondrial RS formation leading to a redox-dependent activation of NFkappaB. NFkappaB activation played a pivotal role in counteract RS accumulation in ROH-treated cells, since NFkappaB inhibition with DNA decoy oligonucleotides or pharmacological inhibitors (BAY-117082) potentiated ROH-induced RS accumulation and oxidative damage. In the presence of NFkappaB inhibition, ROH-induced oxidative stress promoted a prolonged activation of the JNK-activator protein 1 (AP-1) pathway and induced significant decreases in cell viability. Inhibition of JNK-AP-1 with decoy oligonucleotides to AP-1 or JNK inhibitor SP600125 prevented the decreases in cell viability. Antioxidants blocked the persistent JNK-AP-1 activation, cell oxidative damage, and the decreases in cell viability induced by NFkappaB inhibition. Finally, our data point superoxide dismutase (SOD)2 as a potential antioxidant factor involved in NFkappaB protective effects against ROH-induced oxidative stress. Taken together, data presented here show that NFkappaB mediates cellular resistance to the pro-oxidant effects of vitamin A by inhibiting RS accumulation and the persistent and redox-dependent activation of JNK-AP-1 cascade.


Free Radical Research | 2008

Xanthine oxidase-dependent ROS production mediates vitamin A pro-oxidant effects in cultured Sertoli cells.

Alfeu Zanotto-Filho; Rafael Schröder; José Cláudio Fonseca Moreira

Several studies have suggested that vitamin A (retinol, ROH) presents pro-oxidant properties in biological systems. Recent studies point out that xantine oxidase, a ROS-generating enzyme, catalyses ROH oxidation to RA in vitro. These works stimulated the authors to investigate whether xanthine oxidase could be involved on the ROH pro-oxidative effects reported in cultured Sertoli cells. In vitro, it was demonstrate that xanthine oxidase generates superoxide in the presence of ROH as assessed by superoxide mediated-NBT reduction. Superoxide production is potentiated in the presence of NADH and inhibited by allopurinol. In Sertoli cells, ROH treatment increased xanthine oxidase activity and inhibition of the enzyme with allopurinol attenuated ROH-induced ROS production, protein damage and cytotoxicity. Moreover, inhibition of ROH oxidation to RA by retinaldehyde dehydrogenase inhibitor potentiated both xanthine oxidase-dependent ROS production and cell damage in ROH-treated cells. The data show that xanthine oxidase may play a role on vitamin A pro-oxidant effects.


Free Radical Research | 2008

Differential effects of retinol and retinoic acid on cell proliferation: A role for reactive species and redox-dependent mechanisms in retinol supplementation

Alfeu Zanotto-Filho; Rafael Schröder; José Cláudio Fonseca Moreira

While some authors suggest that retinoids are potential anti-proliferative and antioxidant agents, evidence has suggested those present pro-oxidant properties, which might lead to malignant proliferation. These discordances stimulated one to investigate the proliferative/anti-proliferative properties of two major retinoids, retinol (ROH) and retinoic acid (RA). In Sertoli cells, ROH increased proliferation while RA was anti-proliferative. ROH increased DNA synthesis, decreased p21 levels and induced cell cycle progression. ROH increased reactive species (RS) production and stimulated p38, JNK1/2 and ERK1/2 MAPKs activation. Antioxidant treatment with Trolox blocked ROH-induced RS production, MAPKs activation and proliferation; MAPKs inhibition blocked proliferation. The potential sites of RS indicate that ROH-induced RS is promoted via mitochondria and xanthine oxidase. In contrast, RA induced neither RS production nor MAPKs activation. RA decreased DNA synthesis and increased p21 leading to cell arrest. Overall, data show that ROH, but not RA, is able to induce proliferation through non-classical and redox-dependent mechanisms.


Journal of Physiology and Biochemistry | 2012

Changes in lymphocyte HSP70 levels in women handball players throughout 1 year of training: the role of estrogen levels

Maria Helena Weber; Ricardo Fagundes da Rocha; Carlos Eduardo Schnorr; Rafael Schröder; José Cláudio Fonseca Moreira

Heat shock protein 70 (HSP70) is a chaperone that maintains protein conformation during heat stress. It has recently been observed that HSP70 may be released from cells in response to increased energy demand (e.g., exercise) and/or oxidative stress. Since HSP70 levels should change in response to athletic training, we have investigated whether blood HSP70 levels in young women handball players change over a complete training season. Thirty women handball players (12–24 years old) were divided into low (≥30 pg mL−1) (LE) and normal (30–330 pg mL−1) (NE) estradiol groups. HSP70 levels in lymphocytes and plasma and blood redox parameters were evaluated over 1 year (2009), with sampling at the beginning, middle, and end of the season. We observed no changes in superoxide dismutase activity or protein carbonyl or extracellular HSP70 levels, while catalase activity increased at the middle of the season in the NE group, and the thiobarbituric acid species levels in both groups were higher at the beginning of the season than at the middle or end. The lymphocyte HSP70 content was higher at the middle and end than at the beginning of the season in the NE group and also higher in the LE group than in the NE group at the beginning of the season. These results suggest that plasma estradiol levels may play an important role in exercise training and that the intracellular HSP70 content, a biomarker for inflammation, is affected by both estradiol levels and exercise-induced oxidative stress.

Collaboration


Dive into the Rafael Schröder's collaboration.

Top Co-Authors

Avatar

José Cláudio Fonseca Moreira

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Alfeu Zanotto-Filho

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Daniel Pens Gelain

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Ana Maria Oliveira Battastini

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Elizandra Braganhol

Universidade Federal de Pelotas

View shared research outputs
Top Co-Authors

Avatar

Fábio Klamt

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Mario Luiz Conte da Frota Junior

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Matheus Augusto de Bittencourt Pasquali

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Amelia Teresinha Henriques

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

André Simões Pires

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge