Rafael Tarozo
Brown University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rafael Tarozo.
Science | 2011
C. D. K. Herd; Alexandra I. Blinova; Danielle N. Simkus; Yongsong Huang; Rafael Tarozo; Conel M. Od. Alexander; Frank Gyngard; Larry R. Nittler; George D. Cody; Marilyn L. Fogel; Yoko Kebukawa; A. L. David Kilcoyne; Robert W. Hilts; Greg F. Slater; Daniel P. Glavin; Jason P. Dworkin; Michael P. Callahan; Jamie E. Elsila; Bradley T. De Gregorio; Rhonda M. Stroud
The study of organic matter in a well-preserved meteorite provides insight into processes that affected its parent asteroids. The complex suite of organic materials in carbonaceous chondrite meteorites probably originally formed in the interstellar medium and/or the solar protoplanetary disk, but was subsequently modified in the meteorites’ asteroidal parent bodies. The mechanisms of formation and modification are still very poorly understood. We carried out a systematic study of variations in the mineralogy, petrology, and soluble and insoluble organic matter in distinct fragments of the Tagish Lake meteorite. The variations correlate with indicators of parent body aqueous alteration. At least some molecules of prebiotic importance formed during the alteration.
Geochemistry Geophysics Geosystems | 2013
Stefan Schouten; Ellen C. Hopmans; Antoni Rosell-Melé; Ann Pearson; Pierre Adam; Thorsten Bauersachs; Edouard Bard; Stefano M. Bernasconi; Thomas S. Bianchi; Jochen J. Brocks; Laura Truxal Carlson; Isla S. Castañeda; Sylvie Derenne; Ayça Doğrul Selver; Timothy I. Eglinton; Celine Fosse; Valier Galy; Kliti Grice; Kai-Uwe Hinrichs; Yongsong Huang; Arnaud Huguet; Carme Huguet; Sarah J. Hurley; Anitra E. Ingalls; Guodong Jia; Brendan J. Keely; Chris S. Knappy; Miyuki Kondo; Srinath Krishnan; Sara Lincoln
Two commonly used proxies based on the distribution of glycerol dialkyl glycerol tetraethers (GDGTs) are the TEX86 (TetraEther indeX of 86 carbon atoms) paleothermometer for sea surface temperature reconstructions and the BIT (Branched Isoprenoid Tetraether) index for reconstructing soil organic matter input to the ocean. An initial round-robin study of two sediment extracts, in which 15 laboratories participated, showed relatively consistent TEX86 values (reproducibility +/- 3-4 degrees C when translated to temperature) but a large spread in BIT measurements (reproducibility +/- 0.41 on a scale of 0-1). Here we report results of a second round-robin study with 35 laboratories in which three sediments, one sediment extract, and two mixtures of pure, isolated GDGTs were analyzed. The results for TEX86 and BIT index showed improvement compared to the previous round-robin study. The reproducibility, indicating interlaboratory variation, of TEX86 values ranged from 1.3 to 3.0 degrees C when translated to temperature. These results are similar to those of other temperature proxies used in paleoceanography. Comparison of the results obtained from one of the three sediments showed that TEX86 and BIT indices are not significantly affected by interlaboratory differences in sediment extraction techniques. BIT values of the sediments and extracts were at the extremes of the index with values close to 0 or 1, and showed good reproducibility (ranging from 0.013 to 0.042). However, the measured BIT values for the two GDGT mixtures, with known molar ratios of crenarchaeol and branched GDGTs, had intermediate BIT values and showed poor reproducibility and a large overestimation of the true (i.e., molar-based) BIT index. The latter is likely due to, among other factors, the higher mass spectrometric response of branched GDGTs compared to crenarchaeol, which also varies among mass spectrometers. Correction for this different mass spectrometric response showed a considerable improvement in the reproducibility of BIT index measurements among laboratories, as well as a substantially improved estimation of molar-based BIT values. This suggests that standard mixtures should be used in order to obtain consistent, and molar-based, BIT values.
Journal of Chromatography A | 2012
José C. Aponte; James T. Dillon; Rafael Tarozo; Yongsong Huang
Separation of organic compounds containing various numbers of double bonds (DB) can be readily achieved by using silver ion impregnated silica gel, often called silver-ion or argentation chromatography. However, the practical application of silver-ion liquid chromatography in analytical and preparative separations has been limited by the concerns about the stability and mobility of silver ions and the widespread use of reversed phase high performance liquid chromatography. Silver covalently anchored onto the thiol moiety of mercaptopropyl modified silica gel has been tested for the separation of polycyclic aromatic hydrocarbons by ring numbers, but has never been shown to separate mixtures of alkenes having different number of double bonds. We report here that silver-thiolate chromatographic material (AgTCM; including, but not limited to, silver(I) mercaptopropyl silica gel) is also highly efficient in liquid chromatographic separation of alkane/alkenes differing by one double bond. AgTCM displays exceptionally high selectivity for unsaturated compounds and high stability under extended heat and light exposure, while silver is virtually immobile during solvent elution. Compared to ionic silver, silver-thiolate interacts with double bonds less strongly, allowing AgTCM to efficiently separate olefins using less polar (and often less viscous and lower cost) solvents. The interaction energy between silver and ethylene is calculated using established computational methods and the results are in full agreement with our experimental results. Importantly, the exceptional stability of AgTCM gives rise to much higher compound recovery than conventional silver-ion silica gel during the chromatographic elution. Our results pave the way for the development of novel covalently bonded, transition metal-containing chromatographic materials.
Journal of Chromatography A | 2013
James T. Dillon; José C. Aponte; Rafael Tarozo; Yongsong Huang
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have become increasingly popular in dietary supplements worldwide and global demand for higher purity ω-3 PUFAs in clinical applications has been rising rapidly in the recent years. Traditional methods for isolating ω-3 PUFAs however, generally require multiple, cumbersome steps to obtain high purity (>95%) products. In this study, we report an efficient liquid chromatography method for purifying individual omega-3 fatty acid ethyl esters (FAEEs), eicosapentaenoic acid (EPA, C20:5) and docosahexaenoic acid (DHA, C22:6), at >95% purity using a silver(I)-mercaptopropyl stationary phase, otherwise known as silver-thiolate chromatographic material (AgTCM). We demonstrate the key variables controlling separation of FAEEs with a silver(I)-thiolate stationary phase and examine important similarities and differences between silver-thiolate and silver-ion chromatography in regards to the separation mechanism taking place. We demonstrate the separation behavior of FAEEs under various conditions such as mobile phase composition, flow rate and sample injection amount. Purification of EPA and DHA was carried out on an analytical and semi-preparative scale and the resulting purity was determined by GC-FID. We report high attainable purity for EPA (>95%) and DHA (>99%) from a single isocratic separation of fish oil FAEEs within 5-10min using a mobile phase of heptane/acetone (95:5, % v/v).
Journal of Chromatography A | 2012
James T. Dillon; José C. Aponte; Rafael Tarozo; Yongsong Huang
We show that the characterization of mono-, di- and triglycerols can be readily accomplished by high performance liquid chromatography (HPLC) with silver(I)-mercaptopropyl modified silica gel, or silver thiolate chromatographic material (AgTCM), which can be used with evaporative light scattering detection (ELSD) or atmospheric pressure chemical ionization mass spectroscopy (APCI-MS). Separation of triglycerols varying by degrees of unsaturation and cis/trans configuration in common oil samples can be achieved using a simple linear gradient of hexane and acetone. In addition to double bonds, AgTCM also displays major selectivity for compounds with different levels of polarity, allowing for efficient separation between mono-, di- and triglycerols. In comparison to conventional reversed phase columns, AgTCM produces simple chromatograms for rapid assessment of degrees of unsaturation and the amount of trans fats in triglycerides, which are central issues to food quality determination. In comparison to previous silver-ion based HPLC separations, AgTCM-HPLC based column offers greatly enhanced stability, inertness, durability, and reproducibility allowing routine coupling of the HPLC with a mass spectrometer for detection.
Organic Geochemistry | 2012
Elizabeth H. Denis; Jaime Toney; Rafael Tarozo; R. Scott Anderson; Lydia D. Roach; Yongsong Huang
Organic Geochemistry | 2012
Roland Zech; Li Gao; Rafael Tarozo; Yongsong Huang
Organic Geochemistry | 2013
William M. Longo; James T. Dillon; Rafael Tarozo; Jeffrey M. Salacup; Yongsong Huang
Climate of The Past | 2011
Roland Zech; Yongsong Huang; Michael Zech; Rafael Tarozo; Wolfgang Zech
Geochimica et Cosmochimica Acta | 2014
José C. Aponte; Rafael Tarozo; Marcelo R. Alexandre; Conel M. Od. Alexander; Steven B. Charnley; Christian Hallmann; Roger E. Summons; Yongsong Huang