Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rafael Vazquez-Duhalt is active.

Publication


Featured researches published by Rafael Vazquez-Duhalt.


Current Microbiology | 1999

Industrial Dye Decolorization by Laccases from Ligninolytic Fungi

Elizabeth Arriarán Rodríguez; Michael A. Pickard; Rafael Vazquez-Duhalt

Abstract. White-rot fungi were studied for the decolorization of 23 industrial dyes. Laccase, manganese peroxidase, lignin peroxidase, and aryl alcohol oxidase activities were determined in crude extracts from solid-state cultures of 16 different fungal strains grown on whole oats. All Pleurotus ostreatus strains exhibited high laccase and manganese peroxidase activity, but highest laccase volumetric activity was found in Trametes hispida. Solid-state culture on whole oats showed higher laccase and manganese peroxidase activities compared with growth in a complex liquid medium. Only laccase activity correlated with the decolorization activity of the crude extracts. Two laccase isoenzymes from Trametes hispida were purified, and their decolorization activity was characterized.


Chemistry & Biology | 2002

Suicide Inactivation of Peroxidases and the Challenge of Engineering More Robust Enzymes

Brenda Valderrama; Marcela Ayala; Rafael Vazquez-Duhalt

As the number of industrial applications for proteins continues to expand, the exploitation of protein engineering becomes critical. It is predicted that protein engineering can generate enzymes with new catalytic properties and create desirable, high-value, products at lower production costs. Peroxidases are ubiquitous enzymes that catalyze a variety of oxygen-transfer reactions and are thus potentially useful for industrial and biomedical applications. However, peroxidases are unstable and are readily inactivated by their substrate, hydrogen peroxide. Researchers rely on the powerful tools of molecular biology to improve the stability of these enzymes, either by protecting residues sensitive to oxidation or by devising more efficient intramolecular pathways for free-radical allocation. Here, we discuss the catalytic cycle of peroxidases and the mechanism of the suicide inactivation process to establish a broad knowledge base for future rational protein engineering.


Journal of Molecular Microbiology and Biotechnology | 2008

Biodegradation of organic pollutants by halophilic bacteria and archaea.

Sylvie Le Borgne; Dayanira Paniagua; Rafael Vazquez-Duhalt

Hypersaline environments are important for both surface extension and ecological significance. As all other ecosystems, they are impacted by pollution. However, little information is available on the biodegradation of organic pollutants by halophilic microorganisms in such environments. In addition, it is estimated that 5% of industrial effluents are saline and hypersaline. Conventional nonextremophilic microorganisms are unable to efficiently perform the removal of organic pollutants at high salt concentrations. Halophilic microorganisms are metabolically different and are adapted to extreme salinity; these microorganisms are good candidates for the bioremediation of hypersaline environments and treatment of saline effluents. This literature survey indicates that both the moderately halophilic bacteria and the extremely halophilic archaea have a broader catabolic versatility and capability than previously thought. A diversity of contaminating compounds is susceptible to be degraded by halotolerant and halophile bacteria. Nevertheless, significant research efforts are still necessary in order to estimate the true potential of these microorganisms to be applied in environmental processes and in the remediation of contaminated hypersaline ecosystems. This effort should be also focused on basic research to understand the overall degradation mechanism, to identify the enzymes involved in the degradation process and the metabolism regulation.


Science of The Total Environment | 1989

Environmental impact of used motor oil

Rafael Vazquez-Duhalt

The information concerning the effects of used motor oil on the environment is reviewed. The production and fate of used motor oil are analyzed and the effects on soil and aquatic organisms are described. The combustion of waste crankcase oil, with particular reference to environmental impact, is discussed. The mutagenic and carcinogenic effects of used motor oil are described. Information on the biodegradation of lubricating motor oil is also reviewed. The available information shows that used motor oil is a very dangerous polluting product. As a consequence of its chemical composition, world-wide dispersion and effects on the environment, used motor oil must be considered a serious environmental problem.


Angewandte Chemie | 2013

Micromotor‐Based High‐Yielding Fast Oxidative Detoxification of Chemical Threats

Jahir Orozco; Guanzhi Cheng; Diana Vilela; Sirilak Sattayasamitsathit; Rafael Vazquez-Duhalt; Gabriela Valdés-Ramírez; Alberto Escarpa; Chengyou Kan; Joseph Wang

Rapid field conversion of chemical weapons into non-toxic products is one of the most challenging tasks in weapons of mass destruction (WMD) science. This is particularly the case for eliminating stockpiles of chemical warfare agents (CWAs) in remote storage field locations, where the use of large quantities of decontaminating reagents, long reaction times, and controlled mechanical agitation is impossible or undesired. New efficient “clean” technologies and (bio)chemical processes are thus sought for detoxifying stored agents, counteracting nerve-agent attacks, and decommissioning chemical weapons. Environmentally friendly solutions of hydrogen peroxide, combined with suitable activators (e.g., bicarbonate), have been shown to be extremely useful for decontaminating a broad spectrum of CWAs to yield nontoxic products. These peroxide-based systems, which rely on the in situ generation of OOH nucleophiles, have recently replaced chlorine-based bleaching processes, which produce undesirable products, and have thus led to effective decontamination of the chemical agents GB (Sarin, isopropyl methylphosphonofluoridate), VX ((S)-[2-(diisopropylamino)ethyl] O-ethyl methylphosphonothioate), GD (Soman, pinacolyl methylphosphonofluoridate), and HD (sulfur mustard). Yet, such an oxidative treatment commonly requires high peroxide concentrations (20–30%; approaching a stoichiometry of 1:50), along with prolonged operation and/or mechanical agitation. Such reaction conditions are not suitable or not desired for eliminating stockpiles of CWAs in remote field settings or hostile storage locations, as large quantities of the reagents may not be transportable on military aircrafts and require special packaging and handling. The efficient elimination of chemical-weapon stockpiles in field locations thus remains a major challenge to the chemistry and defense communities. Herein, we describe a powerful strategy that is based on self-propelled micromotors, for a high-yielding accelerated oxidative decontamination of chemical threats using low peroxide levels and no external agitation. Functionalized synthetic micromotors have recently demonstrated remarkable capabilities in terms of isolation and transport for diverse biomedical and environmental applications, but not in connection to increasing the yield and speed of chemical reactions. The new motor-based method relies on the use of peroxide-driven microtubular engines for the efficient selfmixing of a remediation solution, which dramatically accelerates the decontamination process. Fluid mixing is extremely important for enhancing the yield and speed of a wide range of chemical processes, including decontamination reactions, where quiescent conditions lead to low reaction efficiency and long operations. The observed mixing, which is induced by the peroxide-driven micromotor, is analogous to that reported for the motility of E. coli bacteria, where a large-scale collective motion has been shown to enhance diffusion processes. Enhanced diffusion of passive tracers has also been observed in the presence of catalytic nanowire motors. Although the new micromotor strategy presented herein was applied to the accelerated, high-yielding, and simplified decontamination of organophosphate (OP) nerve agents, the concept could have broad implications for enhancing the efficiency and speed of a wide range of chemical processes in the absence of external agitation. The concept of the micromotor/peroxide-based decontamination of chemical threats is illustrated in Figure 1. This new strategy relies on micromotors without mechanical stirring (Figure 1A). A known number of micromotors were placed in a nerve-agent-contaminated solution, along with hydrogen peroxide (used as the oxidizing agent as well as the micromotor fuel), the peroxide activator (NaHCO3 or NaOH), and the surfactant sodium cholate (NaCh), which was essential for bubble generation. The oxidative conversion of the OP nerve agent into para-nitrophenol (p-NP) was achieved under mild quiescent conditions that involve the in situ generation of OOH nucleophiles with no external stirring (Figure 1B). The decrease in concentration of the OP [*] Dr. J. Orozco, G. Cheng, D. Vilela, Dr. S. Sattayasamitsathit, Prof. R. Vazquez-Duhalt, Dr. G. Vald s-Ram rez, Dr. O. S. Pak, Prof. J. Wang Departments of Nanoengineering and Mechanical Engineering University of California San Diego La Jolla, CA 92093 (USA) E-mail: [email protected] G. Cheng, Prof. C. Kan Tsinghua University, Beijing, 100084 (China) D. Vilela, Prof. A. Escarpa University of Alcal 28871 Alcal de Henares (Spain)


Journal of Molecular Catalysis B-enzymatic | 1999

Cytochrome c as a biocatalyst

Rafael Vazquez-Duhalt

Abstract Type c cytochromes, which are involved in the electron transport system, are also able to catalyze peroxidase-like reactions in the presence of an electron acceptor, such as hydrogen peroxide or an organic hydroperoxide. This work reviews the catalytic activity of cytochrome c, and the potential design by site-directed mutagenesis and chemical modification of new biocatalysts for environmental purposes.


Chemosphere | 2009

Halogenated pesticide transformation by a laccase–mediator system

Cristina Torres-Duarte; Rosa Roman; Raunel Tinoco; Rafael Vazquez-Duhalt

The transformation of organic halogenated pesticides by laccase-mediator system has been investigated. Twelve pesticides were assayed in the presence of nine different mediators. Acetosyringone and syringaldehyde showed to be the best mediators. The halogenated pesticides bromoxynil, niclosamide, bromofenoxim and dichlorophen were transformed by the laccase-syringaldehyde system showing catalytic activities of 48.8, 142.0, 166.2 and 1257.6nmolmin(-1)U(-1), respectively. The highest pesticide transformation rates were obtained with a mediator-substrate proportion of 5:1, one of the lowest reported so far for the laccase-mediator systems. The analysis of the main product from the dichlorophen transformation showed that an oxidative dehalogenation is involved in the catalytic mechanism. Adduct formation between the mediator syringaldehyde and the pesticides dichlorophen or bromoxynil was also found after enzymatic oxidation. The main goal of this work is to evaluate environmental-friendly mediators for the pesticide transformation, and the potential of laccase-mediator system to efficiently reduce the environmental impact of organic halogenated pesticides is discussed.


Biodegradation | 2003

Microsomal transformation of organophosphorus pesticides by white rot fungi

Juan Jauregui; Brenda Valderrama; Arnulfo Albores; Rafael Vazquez-Duhalt

The enzymatic mechanism for the transformationof organophosphorus pesticides (OPPs) by differentwhite-rot fungi strains was studied. With theexception of Ganoderma applanatum 8168,all strains from a collection of 17 different fungicultures were able to deplete parathion. Threestrains showing the highest activities were selectedfor further studies: Bjerkandera adusta 8258,Pleurotus ostreatus 7989 and Phanerochaetechrysosporium 3641. These strains depleted 50 to96% of terbufos, azinphos-methyl, phosmet andtribufos after four-days exposure to the pesticides.In order to identify the cellular localization of thetransformation activity, the extracellular andmicrosomal fractions of Pleurotus ostreatus7989 were evaluated in vitro. While the activitiesof ligninolytic enzymes (lignin peroxidase,manganese peroxidase and laccase) weredetected in the extracellular fraction, noenzymatic modification of any of the fivepesticides tested could be found, suggestingthe intracellular origin of the transformationactivity. In accordance with this observation themicrosomal fraction was found able to transformthree OPPs with the following rates:10 μmol mg prot-1 h-1 forphosmet, 5.7 μmol mg prot-1 h-1 forterbufos, and 2.2 μmol mg prot-1 h-1 forazinphos-methyl. The products from these reactions andfrom the transformation of trichlorfon and malathion,were identified by mass-spectrometry. These results,supported by specific inhibition experiments and thestringent requirement for NADPH during the in vitroassays suggest the involvement of a cytochrome P450.


Journal of Microbiological Methods | 2002

Effect of pollutants on the ergosterol content as indicator of fungal biomass

Martha Barajas-Aceves; Mainul Hassan; Raunel Tinoco; Rafael Vazquez-Duhalt

Ergosterol content was determined in 20 white-rot fungi isolates and the values ranged from 2380 to 13060 microg g(-1) fungal biomass. Significant changes of ergosterol content according the physiological stage for Bjerkandera adusta 4312 and Coriolopsis gallica 8260 were found, showing the highest values during the stationary phase. However, in the case of Phanerochaete chrysosporium 3642, no changes were detected during growth. The effect of pollutants, such as heavy metals and fungicides, on the ergosterol content of C. gallica was determined. Heavy metals (Cu 80 ppm, Zn 50 ppm or Cd 10 ppm) and fungicides (thiram 3 ppm or pentachlorophenol 1.5 ppm) at concentrations that reduce the metabolic activity between 18% and 53% (pollutant-stressed cultures) did not affect the ergosterol content. Only the fungicide zineb (25 ppm) reduced significantly the ergosterol content in biomass basis. In soil experiments with Cu (80 ppm) or thiram (10 ppm) after 15 and 30 days of incubation, the ergosterol content in soil was linearly correlated to the fungal biomass C in both polluted and control soil cultures. The ergosterol content was independent of the presence or the absence of pollutants. Thus, these results indicate that ergosterol can be a useful indicator for fungal biomass in polluted soils, and can be applied for monitoring bioremediation processes.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2003

Evolutionary and structural diversity of fungal laccases

Brenda Valderrama; Patricia Oliver; Arturo Medrano-Soto; Rafael Vazquez-Duhalt

Fungal laccases have been extensively exploited for industrial purposes and there is a wealth of information available regarding their reaction mechanism, biological role and several molecular aspects, including cloning, heterologous expression and transcriptional analyses. Here we present the reconstruction of the fungal laccase loci evolution inferred from the comparative analysis of 48 different sequences. The topology of the phylogenetic trees indicate that a single monophyletic branch exists for fungal laccases and that laccase isozyme genes may have evolved independently, possibly through duplication-divergence events. Laccases are copper-containing enzymes generally identified by the utilization of substituted p-diphenol substrates. Interestingly, our approach permitted the assignment of two copper-containing oxidases, preliminarily catalogued as laccases, to a different evolutionary group, distantly related to the main branch of bona fide laccases.

Collaboration


Dive into the Rafael Vazquez-Duhalt's collaboration.

Top Co-Authors

Avatar

Raunel Tinoco

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Marcela Ayala

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Sergio Águila

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brenda Valderrama

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Karla Juarez-Moreno

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Rosa Roman

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo Torres

Benemérita Universidad Autónoma de Puebla

View shared research outputs
Researchain Logo
Decentralizing Knowledge