Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rafaela Holtappels is active.

Publication


Featured researches published by Rafaela Holtappels.


Journal of Virology | 2000

Enrichment of Immediate-Early 1 (m123/pp89) Peptide-Specific CD8 T Cells in a Pulmonary CD62Llo Memory-Effector Cell Pool during Latent Murine Cytomegalovirus Infection of the Lungs

Rafaela Holtappels; Marcus-Folker Pahl-Seibert; Doris Thomas; Matthias J. Reddehase

ABSTRACT Interstitial cytomegalovirus (CMV) pneumonia is a clinically relevant complication in recipients of bone marrow transplantation (BMT). Recent data for a model of experimental syngeneic BMT and concomitant infection of BALB/c mice with murine CMV (mCMV) have documented the persistence of tissue-resident CD8 T cells after clearance of productive infection of the lungs (J. Podlech, R. Holtappels, M.-F. Pahl-Seibert, H.-P. Steffens, and M. J. Reddehase, J. Virol. 74:7496–7507, 2000). It was proposed that these cells represent antiviral “standby” memory cells whose functional role might be to help prevent reactivation of latent virus. The pool of pulmonary CD8 T cells was composed of two subsets defined by the T-cell activation marker L-selectin (CD62L): a CD62Lhi subset of quiescent memory cells, and a CD62Llo subset of recently resensitized memory-effector cells. In this study, we have continued this line of investigation by quantitating CD8 T cells specific for the three currently published antigenic peptides of mCMV: peptide YPHFMPTNL processed from the immediate-early protein IE1 (pp89), and peptides YGPSLYRRF and AYAGLFTPL, derived from the early proteins m04 (gp34) and M84 (p65), respectively. IE1-specific CD8 T cells dominated in acute-phase pulmonary infiltrates and were selectively enriched in latently infected lungs. Notably, most IE1-specific CD8 T cells were found to belong to the CD62Llo subset representing memory-effector cells. This finding is in accordance with the interpretation that IE1-specific CD8 T cells are frequently resensitized during latent infection of the lungs and may thus be involved in the maintenance of mCMV latency.


Journal of Virology | 2006

CD8 T Cells Control Cytomegalovirus Latency by Epitope-Specific Sensing of Transcriptional Reactivation

Christian O. Simon; Rafaela Holtappels; Hanna-Mari Tervo; Verena Böhm; Torsten Däubner; Silke A. Oehrlein-Karpi; Birgit Kühnapfel; Angélique Renzaho; Dennis Strand; Jürgen Podlech; Matthias J. Reddehase; Natascha K. A. Grzimek

ABSTRACT During murine cytomegalovirus (mCMV) latency in the lungs, most of the viral genomes are transcriptionally silent at the major immediate-early locus, but rare and stochastic episodes of desilencing lead to the expression of IE1 transcripts. This low-frequency but perpetual expression is accompanied by an activation of lung-resident effector-memory CD8 T cells specific for the antigenic peptide 168-YPHFMPTNL-176, which is derivedfrom the IE1 protein. These molecular and immunological findings were combined in the “silencing/desilencing and immune sensing hypothesis” of cytomegalovirus latency and reactivation. This hypothesis proposes that IE1 gene expression proceeds to cell surface presentation of the IE1 peptide by the major histocompatibility complex (MHC) class I molecule Ld and that its recognition by CD8 T cells terminates virus reactivation. Here we provide experimental evidence in support of this hypothesis. We generated mutant virus mCMV-IE1-L176A, in which the antigenic IE1 peptide is functionally deleted by a point mutation of the C-terminal MHC class I anchor residue Leu into Ala. Two revertant viruses, mCMV-IE1-A176L and the wobble nucleotide-marked mCMV-IE1-A176L*, in which Leu is restored by back-mutation of Ala codon GCA into Leu codons CTA and CTT, respectively, were constructed. Pulmonary latency of the mutant virus was found to be associated with an increased prevalence of IE1 transcription and with events of IE3 transactivator splicing. In conclusion, IE1-specific CD8 T cells recognize and terminate virus reactivation in vivo at the first opportunity in the reactivated gene expression program. The perpetual gene expression and antigen presentation might represent the driving molecular force in CMV-associated immunosenescence.


Journal of Virology | 2002

Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype.

Rafaela Holtappels; Doris Thomas; Jürgen Podlech; Matthias J. Reddehase

ABSTRACT The importance of CD8 T cells for the control of cytomegalovirus (CMV) infection has raised interest in the identification of immunogenic viral proteins as candidates for vaccination and cytoimmunotherapy. The final aim is to determine the viral “immunome” for any major histocompatibility complex class I molecule by antigenicity screening of proteome-derived peptides. For human CMV, there is a limitation to this approach: the T cells used as responder cells for peptide screening are usually memory cells that have undergone in vivo selection. On this basis, pUL83 (pp65) and pUL123 (IE1 or pp68 to -72) were classified as immunodominant proteins. It is an open question whether this limited “memory immunome” really reflects the immunogenic potential of the human CMV proteome. Here we document an analogous focus of the memory repertoire on two proteins of murine CMV. Specifically, ca. 80% of all memory CD8 T cells in the spleen as well as in persisting pulmonary infiltrates were found to be specific for the known IE1 peptide 168YPHFMPTNL176 and for the peptide 257AGPPRYSRI265, newly defined here, derived from open reading frame m164. Notably, CD8 T-cell lines of both specificities protected against acute infection upon adoptive transfer. In contrast, the natural immune response to acute infection in draining lymph nodes and in the lungs indicated a somewhat broader specificity repertoire. We conclude that the low number of antigenic peptides identified so far for CMVs reflects a focused memory repertoire, and we predict that more antigenic peptides will be disclosed by analysis of the acute immune response.


Journal of General Virology | 1998

Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation.

Jürgen Podlech; Rafaela Holtappels; Wirtz N; Steffens Hp; Matthias J. Reddehase

Cytomegalovirus (CMV) infection in the period of temporary immunodeficiency after haematoablative treatment and bone marrow transplantation (BMT) is associated with a risk of graft failure and multiple-organ CMV disease. The efficacy of immune system reconstitution is decisive for the prevention of CMV pathogenesis after BMT. Previous data in murine model systems have documented a redundancy in the immune effector mechanisms controlling CMV. CD8 T cells proved to be relevant but not irreplaceable as antiviral effectors. Specifically, in a state of long-term in vivo depletion of the CD8 T-cell subset, CD4 T cells were educed to become deputy effectors controlling CMV by a mechanism involving antiviral cytokines. It is of medical importance to know whether one can trust in this flexible defence in all clinical settings. It is demonstrated here that reconstitution of CD8 T cells is crucial for the prevention of fatal multiple-organ CMV disease under the specific conditions of BMT.


Journal of Experimental Medicine | 2004

Cytomegalovirus Misleads Its Host by Priming of CD8 T Cells Specific for an Epitope Not Presented in Infected Tissues

Rafaela Holtappels; Jürgen Podlech; Marcus-Folker Pahl-Seibert; Markus Jülch; Doris Thomas; Christian O. Simon; Markus Wagner; Matthias J. Reddehase

Cytomegaloviruses (CMVs) code for several proteins that inhibit the presentation of antigenic peptides to CD8 T cells. Although the molecular mechanisms of CMV interference with the major histocompatibility complex class I pathway are long understood, surprisingly little evidence exists to support a role in vivo. Here we document the first example of the presentation of an antigenic peptide being blocked by a CMV immune evasion protein in organs relevant to CMV disease. Although this Db-restricted peptide, which is derived from the antiapoptotic protein M45 of murine CMV (mCMV), is classified as an immunodominant peptide based on response magnitude and long-term memory, adoptive transfer of M45 epitope-specific CD8 T cells did not protect against infection with wild-type mCMV. Notably, the same cells protected C57BL/6 mice infected with an mCMV mutant in which immune evasion protein m152/gp40 is deleted. These data indicate that direct presentation or cross-presentation of an antigenic peptide by professional antigen-presenting cells can efficiently prime CD8 T cells that fail in protection against CMV organ disease because m152/gp40 prevents presentation of this peptide in pathogenetically relevant tissue cells.


Journal of Virology | 2000

Murine Model of Interstitial Cytomegalovirus Pneumonia in Syngeneic Bone Marrow Transplantation: Persistence of Protective Pulmonary CD8-T-Cell Infiltrates after Clearance of Acute Infection

Jürgen Podlech; Rafaela Holtappels; Marcus-Folker Pahl-Seibert; Hans-Peter Steffens; Matthias J. Reddehase

ABSTRACT Interstitial pneumonia (IP) is a severe organ manifestation of cytomegalovirus (CMV) disease in the immunocompromised host, in particular in recipients of bone marrow transplantation (BMT). Diagnostic criteria for the definition of CMV-IP include clinical evidence of pneumonia together with CMV detected in bronchoalveolar lavage or lung biopsy. We have used the model of syngeneic BMT and simultaneous infection of BALB/c mice with murine CMV for studying the pathogenesis of CMV-IP by controlled longitudinal analysis. A disseminated cytopathic infection of the lungs with fatal outcome was observed only when reconstituting CD8 T cells were depleted. Neither CD8 nor CD4 T cells mediated an immunopathogenesis of acute CMV-IP. By contrast, after efficient hematolymphopoietic reconstitution, viral replication in the lungs was moderate and focal. The histopathological picture was dominated by preferential infiltration of CD8 T cells confining viral replication to inflammatory foci. Notably, after clearance of acute infection, CD62Llo and CD62Lhi subsets of CD44+ memory CD8 T cells were found to persist in lung tissue. One can thus operationally distinguish an early CMV-positive IP (phase 1) and a late CMV-negative IP (phase 2). According to the definition, phase 2 histopathology would not be diagnosed as a CMV-IP and could instead be misinterpreted as a CMV-induced immunopathology. We document here that phase 1 as well as phase 2 pulmonary CD8 T cells are capable of exerting effector functions and are effectual in protecting against productive infection. We propose that antiviral “stand-by” memory-effector T cells persist in the lungs to prevent virus recurrence from latency.


Journal of Virology | 2005

Highly Protective In Vivo Function of Cytomegalovirus IE1 Epitope-Specific Memory CD8 T Cells Purified by T-Cell Receptor-Based Cell Sorting

Marcus-Folker Pahl-Seibert; Markus Juelch; Jürgen Podlech; Doris Thomas; Petra Deegen; Matthias J. Reddehase; Rafaela Holtappels

ABSTRACT Reconstitution of antiviral CD8 T cells is essential for controlling cytomegalovirus (CMV) infection after bone marrow transplantation. Accordingly, polyclonal CD8 T cells derived from BALB/c mice infected with murine CMV protect immunocompromised adoptive transfer recipients against CMV disease. The protective population comprises CD8 T cells with T-cell receptors (TCRs) specific for defined and for as-yet-unknown viral epitopes, as well as a majority of nonprotective cells with unrelated specificities. Defined epitopes include IE1/m123 and m164, which are immunodominant in terms of the magnitude of the CD8 T-cell response, and a panel of subordinate epitopes (m04, m18, M45, M83, and M84). While cytolytic T-lymphocyte lines (CTLLs) were shown to be protective regardless of the immunodominance of the respective epitope, the individual contributions of in vivo resident epitope-specific CD8 T cells to the antiviral control awaited investigation. The IE1 peptide 168-YPHFMPTNL-176 is generated from the immediate-early protein 1 (IE1) (pp89/76) of murine CMV and is presented by the major histocompatibility complex class I (MHC-I) molecule Ld. To quantitate its contribution to the protective potential of a CD8-T memory (CD8-TM) cell population, IE1-TCR+ and IE1-TCR− CD8-TM cells were purified by epitope-specific cell sorting with IE1 peptide-loaded MHC-immunoglobulin G1 dimers as ligands of cognate TCRs. Of relevance for clinical approaches to an adoptive cellular immunotherapy, sorted IE1 epitope-specific CD8-TM cells were found to be exceedingly protective upon adoptive transfer. Compared with CTLLs specific for the same epitope and of comparable avidity and TCR β-chain variable region (Vβ)-defined polyclonality, sorted CD8-TM cells proved to be superior by more than 2 orders of magnitude.


Journal of Immunology | 2001

Reconstitution of the Complement Function in C1q-Deficient (C1qa−/−) Mice with Wild-Type Bone Marrow Cells

Franz Petry; Marina Botto; Rafaela Holtappels; Mark Walport; Michael Loos

Besides Ab-independent and Ab-dependent activation of the complement classical pathway in host defense, C1q plays a key role in the processing of immune complexes and in the clearance of apoptotic cells. In humans, C1q deficiency leads to systemic lupus erythematosus-like symptoms in over 90% of the cases, thus making this defect a strong disease susceptibility factor. Similarly, C1q-deficient mice (C1qa−/−) develop systemic lupus erythematosus-like symptoms, such as autoantibodies and glomerulonephritis. We have previously provided evidence that C1q is produced by cells of the monocyte-macrophage lineage. In this study, we have tested whether transplantation of bone marrow cells would be sufficient to reconstitute C1q levels in C1qa−/− mice. C1qa−/− mice received a single graft of 107 bone marrow cells from wild-type (wt) donors after irradiation doses of 6, 7, 8, or 9 Gy. Engraftment was monitored by a Y chromosome-specific PCR and a PCR that differentiated wt from C1qa−/− genotype. Serum levels of C1q Ag and C1 function increased rapidly in the recipient mice, and titers reached normal levels within 6 wk after bone marrow transplantation. In wt mice that received C1qa−/− bone marrow, serum levels of C1q decreased constantly over time and became C1q deficient within 55 wk. These data clearly demonstrate that bone marrow-derived cells are the source of serum C1q and are competent to reconstitute normal C1q serum levels in C1q-deficient mice. Therefore, stem cell transplantation could be a therapy for patients with hereditary C1q deficiency.


Journal of Virology | 2000

The Putative Natural Killer Decoy Early Gene m04 (gp34) of Murine Cytomegalovirus Encodes an Antigenic Peptide Recognized by Protective Antiviral CD8 T Cells

Rafaela Holtappels; Doris Thomas; Jürgen Podlech; Gernot Geginat; Hans-Peter Steffens; Matthias J. Reddehase

ABSTRACT Several early genes of murine cytomegalovirus (MCMV) encode proteins that mediate immune evasion by interference with the major histocompatibility complex class I (MHC-I) pathway of antigen presentation to cytolytic T lymphocytes (CTL). Specifically, the m152 gene product gp37/40 causes retention of MHC-I molecules in the endoplasmic reticulum (ER)-Golgi intermediate compartment. Lack of MHC-I on the cell surface should activate natural killer (NK) cells recognizing the “missing self.” The retention, however, is counteracted by the m04early gene product gp34, which binds to folded MHC-I molecules in the ER and directs the complex to the cell surface. It was thus speculated that gp34 might serve to silence NK cells and thereby complete the immune evasion of MCMV. In light of these current views, we provide here results demonstrating an in vivo role for gp34 in protective antiviral immunity. We have identified an antigenic nonapeptide derived from gp34 and presented by the MHC-I molecule Dd. Besides the immunodominant immediate-early nonapeptide consisting of IE1 amino acids 168-176 (IE1168-176), the early nonapeptide m04243-251 is the second antigenic peptide described for MCMV. The primary immune response to MCMV generates significant m04-specific CD8 T-cell memory. Upon adoptive transfer into immunodeficient recipients, an m04-specific CTL line controls MCMV infection with an efficacy comparable to that of an IE1-specific CTL line. Thus, gp34 is the first noted early protein of MCMV that escapes viral immune evasion mechanisms. These data document that MCMV is held in check by a redundance of protective CD8 T cells recognizing antigenic peptides in different phases of viral gene expression.


Journal of Virology | 2008

Subdominant CD8 T-Cell Epitopes Account for Protection against Cytomegalovirus Independent of Immunodomination

Rafaela Holtappels; Christian O. Simon; Michael W. Munks; Doris Thomas; Petra Deegen; Birgit Kühnapfel; Torsten Däubner; Simone F. Emde; Jürgen Podlech; Natascha K. A. Grzimek; Silke A. Oehrlein-Karpi; Ann B. Hill; Matthias J. Reddehase

ABSTRACT Cytomegalovirus (CMV) infection continues to be a complication in recipients of hematopoietic stem cell transplantation (HSCT). Preexisting donor immunity is recognized as a favorable prognostic factor for the reconstitution of protective antiviral immunity mediated primarily by CD8 T cells. Furthermore, adoptive transfer of CMV-specific memory CD8 T (CD8-TM) cells is a therapeutic option for preventing CMV disease in HSCT recipients. Given the different CMV infection histories of donor and recipient, a problem may arise from an antigenic mismatch between the CMV variant that has primed donor immunity and the CMV variant acquired by the recipient. Here, we have used the BALB/c mouse model of CMV infection in the immunocompromised host to evaluate the importance of donor-recipient CMV matching in immundominant epitopes (IDEs). For this, we generated the murine CMV (mCMV) recombinant virus mCMV-ΔIDE, in which the two memory repertoire IDEs, the IE1-derived peptide 168-YPHFMPTNL-176 presented by the major histocompatibility complex class I (MHC-I) molecule Ld and the m164-derived peptide 257-AGPPRYSRI-265 presented by the MHC-I molecule Dd, are both functionally deleted. Upon adoptive transfer, polyclonal donor CD8-TM cells primed by mCMV-ΔIDE and the corresponding revertant virus mCMV-revΔIDE controlled infection of immunocompromised recipients with comparable efficacy and regardless of whether or not IDEs were presented in the recipients. Importantly, CD8-TM cells primed under conditions of immunodomination by IDEs protected recipients in which IDEs were absent. This shows that protection does not depend on compensatory expansion of non-IDE-specific CD8-TM cells liberated from immunodomination by the deletion of IDEs. We conclude that protection is, rather, based on the collective antiviral potential of non-IDEs independent of the presence or absence of IDE-mediated immunodomination.

Collaboration


Dive into the Rafaela Holtappels's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge