Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rafaela Vaz Sousa Pereira is active.

Publication


Featured researches published by Rafaela Vaz Sousa Pereira.


Hepatology | 2015

Hepatic DNA deposition drives drug‐induced liver injury and inflammation in mice

Pedro Marques; André G. Oliveira; Rafaela Vaz Sousa Pereira; Bruna Araújo David; Lindisley Ferreira Gomides; Adriana Machado Saraiva; Daniele Araújo Pires; Júlia Tosta Novaes; Daniel de Oliveira Patricio; Daniel Cisalpino; Zélia Menezes-Garcia; W. Matthew Leevy; Sarah Chapman; GermánArturo Mahecha; Rafael Elias Marques; Rodrigo Guabiraba; Vicente de Paulo Martins; Danielle G. Souza; Daniel Santos Mansur; Mauro Martins Teixeira; M. Fatima Leite; Gustavo B. Menezes

Drug‐induced liver injury (DILI) is an important cause of acute liver failure, with limited therapeutic options. During DILI, oncotic necrosis with concomitant release and recognition of intracellular content amplifies liver inflammation and injury. Among these molecules, self‐DNA has been widely shown to trigger inflammatory and autoimmune diseases; however, whether DNA released from damaged hepatocytes accumulates into necrotic liver and the impact of its recognition by the immune system remains elusive. Here we show that treatment with two different hepatotoxic compounds (acetaminophen and thioacetamide) caused DNA release into the hepatocyte cytoplasm, which occurred in parallel with cell death in vitro. Administration of these compounds in vivo caused massive DNA deposition within liver necrotic areas, together with an intravascular DNA coating. Using confocal intravital microscopy, we revealed that liver injury due to acetaminophen overdose led to a directional migration of neutrophils to DNA‐rich areas, where they exhibit an active patrolling behavior. DNA removal by intravenous DNASE1 injection or ablation of Toll‐like receptor 9 (TLR9)‐mediated sensing significantly reduced systemic inflammation, liver neutrophil recruitment, and hepatotoxicity. Analysis of liver leukocytes by flow cytometry revealed that emigrated neutrophils up‐regulated TLR9 expression during acetaminophen‐mediated necrosis, and these cells sensed and reacted to extracellular DNA by activating the TLR9/NF‐κB pathway. Likewise, adoptive transfer of wild‐type neutrophils to TLR9−/− mice reversed the hepatoprotective phenotype otherwise observed in TLR9 absence. Conclusion: Hepatic DNA accumulation is a novel feature of DILI pathogenesis. Blockage of DNA recognition by the innate immune system may constitute a promising therapeutic venue. (Hepatology 2015;61:348–360)


Gastroenterology | 2016

Combination of Mass Cytometry and Imaging Analysis Reveals Origin, Location, and Functional Repopulation of Liver Myeloid Cells in Mice

Bruna Araújo David; Rafael Machado Rezende; Maísa Mota Antunes; Mônica Morais Santos; Maria Alice Freitas Lopes; Ariane Barros Diniz; Rafaela Vaz Sousa Pereira; Sarah Cozzer Marchesi; Débora Moreira Alvarenga; Brenda Naemi Nakagaki; Alan Moreira Araújo; Daniela Silva dos Reis; Renata Monti Rocha; Pedro Marques; Woo-Yong Lee; Justin F. Deniset; Pei Xiong Liew; Stephen Rubino; Laura M. Cox; Vanessa Pinho; Thiago M. Cunha; Gabriel da Rocha Fernandes; André G. Oliveira; Mauro M. Teixeira; Paul Kubes; Gustavo B. Menezes

BACKGROUND & AIMS Resident macrophages are derived from yolk sac precursors and seed the liver during embryogenesis. Native cells may be replaced by bone marrow precursors during extensive injuries, irradiation, and infections. We investigated the liver populations of myeloid immune cells and their location, as well as the dynamics of phagocyte repopulation after full depletion. The effects on liver function due to the substitution of original phagocytes by bone marrow-derived surrogates were also examined. METHODS We collected and analyzed liver tissues from C57BL/6 (control), LysM-EGFP, B6 ACTb-EGFP, CCR2-/-, CD11c-EYFP, CD11c-EYFP-DTR, germ-free mice, CX3CR1gfp/gfp, CX3CR1gpf/wt, and CX3CR1-DTR-EYFP. Liver nonparenchymal cells were immunophenotyped using mass cytometry and gene expression analyses. Kupffer and dendritic cells were depleted from mice by administration of clodronate, and their location and phenotype were examined using intravital microscopy and time-of-flight mass cytometry. Mice were given acetaminophen gavage or intravenous injections of fluorescently labeled Escherichia coli, blood samples were collected and analyzed, and liver function was evaluated. We assessed cytokine profiles of liver tissues using a multiplexed array. RESULTS Using mass cytometry and gene expression analyses, we identified 2 populations of hepatic macrophages and 2 populations of monocytes. We also identified 4 populations of dendritic cells and 1 population of basophils. After selective depletion of liver phagocytes, intravascular myeloid precursors began to differentiate into macrophages and dendritic cells; dendritic cells migrated out of sinusoids, after a delay, via the chemokine CX3CL1. The cell distribution returned to normal in 2 weeks, but the repopulated livers were unable to fully respond to drug-induced injury or clear bacteria for at least 1 month. This defect was associated with increased levels of inflammatory cytokines, and dexamethasone accelerated the repopulation of liver phagocytes. CONCLUSIONS In studies of hepatic phagocyte depletion in mice, we found that myeloid precursors can differentiate into liver macrophages and dendritic cells, which each localize to distinct tissue compartments. During replenishment, macrophages acquire the ability to respond appropriately to hepatic injury and to remove bacteria from the blood stream.


Cell Communication and Signaling | 2013

Altered responsiveness to extracellular ATP enhances acetaminophen hepatotoxicity

Sylvia Stella Amaral; André G. Oliveira; Pedro Marques; Jayane L. D. Quintão; Daniele Araújo Pires; Rodrigo R Resende; Bruna R. Sousa; Juliana Gil Melgaço; Marcelo Alves Pinto; Remo Castro Russo; A. C. Gomes; Lídia M. Andrade; Rafael Fernandes Zanin; Rafaela Vaz Sousa Pereira; Cristina Bonorino; Frederico M. Soriani; Cristiano Xavier Lima; Denise Carmona Cara; Mauro M. Teixeira; Maria de Fátima Leite; Gustavo B. Menezes

BackgroundAdenosine triphosphate (ATP) is secreted from hepatocytes under physiological conditions and plays an important role in liver biology through the activation of P2 receptors. Conversely, higher extracellular ATP concentrations, as observed during necrosis, trigger inflammatory responses that contribute to the progression of liver injury. Impaired calcium (Ca2+) homeostasis is a hallmark of acetaminophen (APAP)-induced hepatotoxicity, and since ATP induces mobilization of the intracellular Ca2+ stocks, we evaluated if the release of ATP during APAP-induced necrosis could directly contribute to hepatocyte death.ResultsAPAP overdose resulted in liver necrosis, massive neutrophil infiltration and large non-perfused areas, as well as remote lung inflammation. In the liver, these effects were significantly abrogated after ATP metabolism by apyrase or P2X receptors blockage, but none of the treatments prevented remote lung inflammation, suggesting a confined local contribution of purinergic signaling into liver environment. In vitro, APAP administration to primary mouse hepatocytes and also HepG2 cells caused cell death in a dose-dependent manner. Interestingly, exposure of HepG2 cells to APAP elicited significant release of ATP to the supernatant in levels that were high enough to promote direct cytotoxicity to healthy primary hepatocytes or HepG2 cells. In agreement to our in vivo results, apyrase treatment or blockage of P2 receptors reduced APAP cytotoxicity. Likewise, ATP exposure caused significant higher intracellular Ca2+ signal in APAP-treated primary hepatocytes, which was reproduced in HepG2 cells. Quantitative real time PCR showed that APAP-challenged HepG2 cells expressed higher levels of several purinergic receptors, which may explain the hypersensitivity to extracellular ATP. This phenotype was confirmed in humans analyzing liver biopsies from patients diagnosed with acute hepatic failure.ConclusionWe suggest that under pathological conditions, ATP may act not only an immune system activator, but also as a paracrine direct cytotoxic DAMP through the dysregulation of Ca2+ homeostasis.


Nature Protocols | 2015

Imaging liver biology in vivo using conventional confocal microscopy

Pedro Marques; Maísa Mota Antunes; Bruna Araújo David; Rafaela Vaz Sousa Pereira; Mauro M. Teixeira; Gustavo B. Menezes

Imaging of live animals using intravital microscopy (IVM) has provided a substantial advance in our understanding of cell biology. Here we describe how to adapt a conventional, relatively low-cost laser-scanning microscope to operate as a versatile imaging station. We present the surgical procedures needed to perform liver confocal IVM in mice, thereby allowing one to image different cells in their native environment, including hepatocytes, endothelial cells and leukocytes, as well as to analyze their morphology and function under physiological or pathological conditions. In addition, we propose a plethora of working doses of antibodies and probes to stain multiple cells and molecules simultaneously in vivo. Considering the central role of the liver in metabolism and immunity and the growing interest in the relationship between immune and parenchymal cells, this protocol, in which 20 min of preparation yields up to 4 h of imaging, provides useful insights for various research fields. In addition, the protocol can be easily adapted to investigate adipose tissue, mesentery, intestines, spleen and virtually any abdominal organ.


PLOS ONE | 2013

Vaccination Using Recombinants Influenza and Adenoviruses Encoding Amastigote Surface Protein-2 Are Highly Effective on Protection against Trypanosoma cruzi Infection

Rafael Polidoro Alves Barbosa; Bruno Galvão Filho; Luara Isabela dos Santos; Policarpo Ademar Sales Junior; Pedro Marques; Rafaela Vaz Sousa Pereira; Denise Carmona Cara; Oscar Bruna-Romero; Mauricio M. Rodrigues; Ricardo T. Gazzinelli; Alexandre V. Machado

In the present study we evaluated the protection raised by immunization with recombinant influenza viruses carrying sequences coding for polypeptides corresponding to medial and carboxi-terminal moieties of Trypanosoma cruzi ´s amastigote surface protein 2 (ASP2). Those viruses were used in sequential immunization with recombinant adenovirus (heterologous prime-boost immunization protocol) encoding the complete sequence of ASP2 (Ad-ASP2) in two mouse strains (C57BL/6 and C3H/He). The CD8 effector response elicited by this protocol was comparable to that observed in mice immunized twice with Ad-ASP2 and more robust than that observed in mice that were immunized once with Ad-ASP2. Whereas a single immunization with Ad-ASP2 sufficed to completely protect C57BL/6 mice, a higher survival rate was observed in C3H/He mice that were primed with recombinant influenza virus and boosted with Ad-ASP2 after being challenged with T. cruzi. Analyzing the phenotype of CD8+ T cells obtained from spleen of vaccinated C3H/He mice we observed that heterologous prime-boost immunization protocol elicited more CD8+ T cells specific for the immunodominant epitope as well as a higher number of CD8+ T cells producing TNF-α and IFN-γ and a higher mobilization of surface marker CD107a. Taken together, our results suggest that immunodominant subpopulations of CD8+ T elicited after immunization could be directly related to degree of protection achieved by different immunization protocols using different viral vectors. Overall, these results demonstrated the usefulness of recombinant influenza viruses in immunization protocols against Chagas Disease.


World Journal of Hepatology | 2014

Murine model to study brain, behavior and immunity during hepatic encephalopathy

Lindisley Ferreira Gomides; Pedro Marques; Bruno Engler Faleiros; Rafaela Vaz Sousa Pereira; Sylvia Stella Amaral; Thais Reis Lage; Gustavo Henrique Souza Resende; Patrícia Alves Maia Guidine; Giselle Foureaux; Fabiana Paiva Martins; Marco Antonio Peliky Fontes; Anderson J. Ferreira; Remo Castro Russo; Mauro M. Teixeira; Márcio Flávio Dutra Moraes; Antônio Lúcio Teixeira; Gustavo B. Menezes

AIM To propose an alternative model of hepatic encephalopathy (HE) in mice, resembling the human features of the disease. METHODS Mice received two consecutive intraperitoneal injections of thioacetamide (TAA) at low dosage (300 mg/kg). Liver injury was assessed by serum transaminase levels (ALT) and liver histology (hematoxylin and eosin). Neutrophil infiltration was estimated by confocal liver intravital microscopy. Coagulopathy was evaluated using prolonged prothrombin and partial thromboplastin time. Hemodynamic parameters were measured through tail cuff. Ammonia levels were quantified in serum and brain samples. Electroencephalography (EEG) and psychomotor activity score were performed to show brain function. Brain edema was evaluated using magnetic resonance imaging. RESULTS Mice submitted to the TAA regime developed massive liver injury, as shown by elevation of serum ALT levels and a high degree of liver necrosis. An intense hepatic neutrophil accumulation occurred in response to TAA-induced liver injury. This led to mice mortality and weight loss, which was associated with severe coagulopathy. Furthermore, TAA-treated mice presented with increased serum and cerebral levels of ammonia, in parallel with alterations in EEG spectrum and discrete brain edema, as shown by magnetic resonance imaging. In agreement with this, neuropsychomotor abnormalities ensued 36 h after TAA, fulfilling several HE features observed in humans. In this context of liver injury and neurological dysfunction, we observed lung inflammation and alterations in blood pressure and heart rate that were indicative of multiple organ dysfunction syndrome. CONCLUSION In summary, we describe a new murine model of hepatic encephalopathy comprising multiple features of the disease in humans, which may provide new insights for treatment.


Cellular Immunology | 2013

Prolonged ingestion of ovalbumin diet by Ova sensitized mice suppresses mBSA-induced arthritis.

Maria de Lourdes Meirelles Noviello; Nathália Vieira Batista; Luana Pereira Antunes Dourado; Rafaela Vaz Sousa Pereira; André G. Oliveira; Gustavo B. Menezes; Denise Carmona Cara

Concomitant chronic diseases are a common finding in clinics and may consist in a major issue in therapeutics. Here, we investigated whether prolonged ingestion of ovalbumin (Ova) by sensitized mice would reduce the severity of an associated concurrent immunomediated condition such as antigen-induced arthritis (AIA). AIA was induced by administration of methylated bovine albumin (mBSA) into the knee joints of previously immunized mice, and evaluated by articular leukocyte trafficking and levels of cytokines (TNF-α, IL-1β) and chemokine (CXCL-1) in the periarticular tissue. Continuous Ova feeding by Ova sensitized mice decreased serum levels of anti-Ova IgE, and led to a significant suppression of leukocyte adhesion and infiltration into synovial tissue and cavity. Also, a marked cytokine reduction was observed, suggesting that prolonged ingestion of ovalbumin by sensitized mice suppresses specific IgE production with concomitant reduction in peripheral T cells, which may impact in the pathogenesis of AIA, a non-related condition.


Inflammation Research | 2018

IL-33 signalling in liver immune cells enhances drug-induced liver injury and inflammation

Maísa Mota Antunes; Alan Moreira Araújo; Ariane Barros Diniz; Rafaela Vaz Sousa Pereira; Débora Moreira Alvarenga; Bruna Araújo David; Renata Monti Rocha; Maria Alice Freitas Lopes; Sarah Cozzer Marchesi; Brenda Naemi Nakagaki; Érika Carvalho; Pedro Marques; Bernhard Ryffel; Valerie Quesniaux; Rodrigo Guabiraba Brito; José Carlos Alves Filho; Denise Carmona Cara; Rafael Machado Rezende; Gustavo B. Menezes

Objective and designThe aim of this study was to investigate the contribution of IL-33/ST2 axis in the onset and progression of acute liver injury using a mice model of drug-induced liver injury (DILI).Material and treatmentsDILI was induced by overdose administration of acetaminophen (APAP) by oral gavage in wild-type BALB/c, ST2-deficient mice and in different bone marrow chimeras. Neutrophils were depleted by anti-Ly6G and macrophages with clodronate liposomes (CLL).MethodsBlood and liver were collected for biochemical, immunologic and genetic analyses. Mice were imaged by confocal intravital microscopy and liver non-parenchymal cells and hepatocytes were isolated for flow cytometry, genetic and immunofluorescence studies.ResultsAcetaminophen overdose caused a massive necrosis and accumulation of immune cells within the liver, concomitantly with IL-33 and chemokine release. Liver non-parenchymal cells were the major sensors for IL-33, and amongst them, neutrophils were the major players in amplification of the inflammatory response triggered by IL-33/ST2 signalling pathway.ConclusionBlockage of IL-33/ST2 axis reduces APAP-mediated organ injury by dampening liver chemokine release and activation of resident and infiltrating liver non-parenchymal cells.


European Journal of Immunology | 2017

GRPR antagonist protects from drug-induced liver injury by impairing neutrophil chemotaxis and motility

Rafael Sanguinetti Czepielewski; Natália Jaeger; Pedro Marques; Maísa Mota Antunes; Maurício Menegatti Rigo; Débora Moreira Alvarenga; Rafaela Vaz Sousa Pereira; Rodrigo Dornelles da Silva; Tiago Giuliani Lopes; Vinicius Duval da Silva; Bárbara Nery Porto; Gustavo B. Menezes; Cristina Bonorino

Drug‐induced liver injury (DILI) is a major cause of acute liver failure (ALF), where hepatocyte necrotic products trigger liver inflammation, release of CXC chemokine receptor 2 (CXCR2) ligands (IL‐8) and other neutrophil chemotactic molecules. Liver infiltration by neutrophils is a major cause of the life‐threatening tissue damage that ensues. A GRPR (gastrin‐releasing peptide receptor) antagonist impairs IL‐8‐induced neutrophil chemotaxis in vitro. We investigated its potential to reduce acetaminophen‐induced ALF, neutrophil migration, and mechanisms underlying this phenomenon. We found that acetaminophen‐overdosed mice treated with GRPR antagonist had reduced DILI and neutrophil infiltration in the liver. Intravital imaging and cell tracking analysis revealed reduced neutrophil mobility within the liver. Surprisingly, GRPR antagonist inhibited CXCL2‐induced migration in vivo, decreasing neutrophil activation through CD11b and CD62L modulation. Additionally, this compound decreased CXCL8‐driven neutrophil chemotaxis in vitro independently of CXCR2 internalization, induced activation of MAPKs (p38 and ERK1/2) and downregulation of neutrophil adhesion molecules CD11b and CD66b. In silico analysis revealed direct binding of GRPR antagonist and CXCL8 to the same binding spot in CXCR2. These findings indicate a new potential use for GRPR antagonist for treatment of DILI through a mechanism involving adhesion molecule modulation and possible direct binding to CXCR2.


Nutrition | 2016

Immunologic and metabolic effects of high-refined carbohydrate-containing diet in food allergic mice

Letícia Tamie Paiva Yamada; Marina C. Oliveira; Nathália Vieira Batista; Roberta Cristelli Fonseca; Rafaela Vaz Sousa Pereira; Denise Alves Perez; Mauro M. Teixeira; Denise Carmona Cara; Adaliene Versiani Matos Ferreira

OBJECTIVE Allergic mice show a reduction in body weight and adiposity with a higher inflammatory response in the adipose tissue similar to obese fat tissue. This study aimed to evaluate whether the low-grade inflammatory milieu of mice with diet-induced mild obesity interferes with the allergic response induced by ovalbumin (OVA). METHODS BALB/c mice were divided into four groups: 1) non-allergic (OVA-) mice fed chow diet, 2) allergic (OVA+) mice fed chow diet, 3) OVA- mice fed high-refined carbohydrate-containing (HC) diet, and 4) OVA+ mice fed HC diet. After 5 wk, allergic groups were sensitized with OVA and received a booster 14 d later. All groups received an oral OVA challenge 7 d after the booster. RESULTS Allergic groups showed increased serum levels of total IgE, anti-OVA IgE, and IgG1; a high disease activity index score; aversion to OVA; and increased intestinal eosinophil infiltration. Non-allergic mild-obese mice also showed aversion to OVA and an increased number of eosinophils in the proximal jejunum. After the allergic challenge, OVA+ mice fed chow diet showed weight loss and lower adiposity in several adipose tissue depots. OVA+ mice fed HC diet showed a loss of fat mass only in the mesenteric adipose tissue. Furthermore, increased levels of TNF, IL-6, and IL-10 were observed in this tissue. CONCLUSIONS Our data show that mild-obese allergic mice do not present severe pathologic features of food allergy similar to those exhibited by lean allergic mice. Mild obesity promoted by HC diet ingestion causes important intestinal disorders that appear to modulate the inflammatory response during the antigen challenge.

Collaboration


Dive into the Rafaela Vaz Sousa Pereira's collaboration.

Top Co-Authors

Avatar

Gustavo B. Menezes

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Pedro Marques

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Denise Carmona Cara

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Mauro M. Teixeira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Bruna Araújo David

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

André G. Oliveira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Maísa Mota Antunes

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Daniele Araújo Pires

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Débora Moreira Alvarenga

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Lindisley Ferreira Gomides

Universidade Federal de Minas Gerais

View shared research outputs
Researchain Logo
Decentralizing Knowledge