Rafał Dolot
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rafał Dolot.
Journal of Biological Chemistry | 2010
Magdalena Ozga; Rafał Dolot; Magdalena Janicka; Renata Kaczmarek; Agnieszka Krakowiak
Nucleoside 5′-O-phosphorothioates are formed in vivo as primary products of hydrolysis of oligo(nucleoside phosphorothioate)s (PS-oligos) that are applied as antisense therapeutic molecules. The biodistribution of PS-oligos and their pharmacokinetics have been widely reported, but little is known about their subsequent decay inside the organism. We suggest that the enzyme responsible for nucleoside 5′-O-monophosphorothioate ((d)NMPS) metabolism could be histidine triad nucleotide-binding protein 1 (Hint-1), a phosphoramidase belonging to the histidine triad (HIT) superfamily that is present in all forms of life. An additional, but usually ignored, activity of Hint-1 is its ability to catalyze the conversion of adenosine 5′-O-monophosphorothioate (AMPS) to 5′-O-monophosphate (AMP). By mutagenetic and biochemical studies, we defined the active site of Hint-1 and the kinetic parameters of the desulfuration reaction (P-S bond cleavage). Additionally, crystallographic analysis (resolution from 1.08 to 1.37 Å) of three engineered cysteine mutants showed the high similarity of their structures, which were not very different from the structure of WT Hint-1. Moreover, we found that not only AMPS but also other ribonucleoside and 2′-deoxyribonucleoside phosphorothioates are desulfurated by Hint-1 at the following relative rates: GMPS > AMPS > dGMPS ≥ CMPS > UMPS > dAMPS ≫ dCMPS > TMPS, and during the reaction, hydrogen sulfide, which is thought to be the third gaseous mediator, was released.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2012
Rafał Dolot; Magdalena Ozga; Artur Włodarczyk; Agnieszka Krakowiak; Barbara Nawrot
Histidine triad nucleotide-binding protein 1 (HINT1) represents the most ancient and widespread branch of the histidine triad protein superfamily. HINT1 plays an important role in various biological processes and has been found in many species. Here, the structure of the human HINT1-adenosine 5-monophosphate (AMP) complex at 1.38u2005Å resolution obtained from a new monoclinic crystal form is reported. The final structure has R(cryst) = 0.1207 (R(free) = 0.1615) and the model exhibits good stereochemical quality. Detailed analysis of the high-resolution data allowed the details of the protein structure to be updated in comparison to the previously published data.
Journal of Structural Biology | 2016
Joanna Śliwiak; Rafał Dolot; Karolina Michalska; Kamil Szpotkowski; Grzegorz Bujacz; Michal Sikorski; Mariusz Jaskolski
Plant pathogenesis-related class 10 (PR-10) proteins are a family of abundant proteins initially identified as elements of the plant defense system. The key structural feature suggesting PR-10 functionality is a huge hydrophobic cavity created in the protein interior by a scaffold composed of an extended β-sheet wrapped around a long and flexible C-terminal α-helix. Several crystallographic and NMR studies have shown that the cavity can accommodate a variety of small molecule ligands, including phytohormones. The article describes ∼1.3 Å resolution crystal structures of a Lupinus luteus PR-10 isoform LlPR-10.1A, in its free form and in complex with trans-zeatin, a naturally occurring plant hormone belonging to the cytokinin group. Moreover we present the structure of the same protein where the saturation with zeatin is not complete. This set of three crystal structures allows us to track the structural adaptation of the protein upon trans-zeatin docking, as well as the sequence of the ligand-binding events, step-by-step. In addition, titration of LlPR-10.1A with trans-zeatin monitored in solution by CD spectra, confirmed the pattern of structural adaptations deduced from the crystallographic studies. The ligand-biding mode shows no similarity to other zeatin complexes of PR-10 proteins. The present work, which describes the first atomic models of the same PR-10 protein with and without a physiological ligand, reveals that the conformation of LlPR-10.1A undergoes a significant structural rearrangement upon trans-zeatin binding.
Biochimica et Biophysica Acta | 2014
Agnieszka Krakowiak; Roza Pawlowska; Beata Kocoń-Rębowska; Rafał Dolot; Wojciech J. Stec
BACKGROUNDnOne of the activities of histidine triad nucleotide-binding protein 1 (Hint1) under in vitro conditions is the conversion of nucleoside 5-O-phosphorothioate (NMPS) to its 5-O-phosphate (NMP), which is accompanied by the release of hydrogen sulfide.nnnMETHODSnNon-hydrolyzable derivatives of AMPS and dCMPS, each containing the residue able to form a covalent bond in nucleic acid-protein complexes via photocrosslinking (at 308nm), were applied at the complexing experiments with recombinant and cellular Hint1. The cellular lysates prepared after RNAi-mediated knockdown of Hint1 were incubated with AMPS and the level of desulfuration was measured.nnnRESULTSnRecombinant Hint1 and Hint1 present in the cellular lysate of A549 cells, formed complexes with the used substrate analogs. Computer modeling experiments, in which the ligand was docked at the binding pocket, confirmed that direct interactions between Hint1 and the screened analogs are possible. Using RNAi technology, we demonstrated lowered levels of AMPS substrate desulfuration in reactions that employed the cell lysates with a reduced Hint1 level.nnnCONCLUSIONSnThe enzymatic conversion of AMPS to AMP occurred with the participation of cellular Hint1, the protein, which is present in all organisms.nnnGENERAL SIGNIFICANCEnThe intracellular Hint1 could be responsible for the in vivo desulfuration of nucleosides-5-monophosphorothioate, thus it can contribute to the phosphorothioate oligonucleotides metabolism. H2S released during this process may participate in several physiological processes, thus NMPSs can be precursors/donors of H2S in vivo and can be used to study the effects of this gas in biological systems. Moreover, the controlled delivery of (d)NMPSs into cells may be of medicinal utility.
Acta Crystallographica Section D-biological Crystallography | 2011
Rafał Dolot; Magdalena Ozga; Agnieszka Krakowiak; Barbara Nawrot
Histidine triad nucleotide-binding protein 1 (HINT1) represents the most ancient and widespread branch in the histidine-triad protein superfamily. HINT1 plays an important role in various biological processes and has been found in many species. Here, the first complete structure of the rabbit HINT1-adenosine complex is reported at 1.10u2005Å resolution, which is one of the highest resolutions obtained for a HINT1 structure. The final structure has an R(cryst) of 14.25% (R(free) = 16.77%) and the model exhibits good stereochemical qualities. A detailed analysis of the atomic resolution data allowed an update of the details of the protein structure in comparison to previously published data.
International Journal of Biological Macromolecules | 2016
Rafał Dolot; Renata Kaczmarek; Aleksandra Sęda; Agnieszka Krakowiak; Janina Baraniak; Barbara Nawrot
Histidine triad nucleotide-binding protein 1 (HINT1) represents the most ancient and widespread branch in the histidine triad proteins superfamily. HINT1 plays an important role in various biological processes, and it has been found in many species. Here, we report the first structure (at a 2.34Å resolution) of a complex of human HINT1 with a non-hydrolyzable analog of an Ap4A dinucleotide, containing bis-phosphorothioated glycerol mimicking a polyphosphate chain, obtained from a primitive monoclinic space group P21 crystal. In addition, the apo form of hHINT1u2009at the space group P21 refined to 1.92Å is reported for comparative studies.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2013
Rafał Dolot; Artur Włodarczyk; Grzegorz Bujacz; Barbara Nawrot
Histidine triad nucleotide-binding protein 2 (HINT2) is a mitochondrial adenosine phosphoramidase mainly expressed in the pancreas, liver and adrenal gland. HINT2 possibly plays a role in apoptosis, as well as being involved in steroid biosynthesis, hepatic lipid metabolism and regulation of hepatic mitochondria function. The expression level of HINT2 is significantly down-regulated in hepatocellular carcinoma patients. To date, endogenous substrates for this enzyme, as well as the three-dimensional structure of human HINT2, are unknown. In this study, human HINT2 was cloned, overexpressed in Escherichia coli and purified. Crystallization was performed at 278 K using PEG 4000 as the main precipitant; the crystals, which belonged to the tetragonal space group P41212 with unit-cell parameters a = b = 76.38, c = 133.25 Å, diffracted to 2.83u2005Å resolution. Assuming two molecules in the asymmetric unit, the Matthews coefficient and the solvent content were calculated to be 2.63 Å(3) Da(-1) and 53.27%, respectively.
Nucleic Acids Research | 2018
Rafał Dolot; Curtis H. Lam; Malgorzata Sierant; Qiang Zhao; Feng-Wu Liu; Barbara Nawrot; Martin Egli; Xianbin Yang
Abstract Thrombin-binding aptamer (TBA) is a DNA 15-mer of sequence 5′-GGT TGG TGT GGT TGG-3′ that folds into a G-quadruplex structure linked by two T-T loops located on one side and a T-G-T loop on the other. These loops are critical for post-SELEX modification to improve TBA target affinity. With this goal in mind we synthesized a T analog, 5-(indolyl-3-acetyl-3-amino-1-propenyl)-2′-deoxyuridine (W) to substitute one T or a pair of Ts. Subsequently, the affinity for each analog was determined by biolayer interferometry. An aptamer with W at position 4 exhibited about 3-fold increased binding affinity, and replacing both T4 and T12 with W afforded an almost 10-fold enhancement compared to native TBA. To better understand the role of the substituent’s aromatic moiety, an aptamer with 5-(methyl-3-acetyl-3-amino-1-propenyl)-2′-deoxyuridine (K; W without the indole moiety) in place of T4 was also synthesized. This K4 aptamer was found to improve affinity 7-fold relative to native TBA. Crystal structures of aptamers with T4 replaced by either W or K bound to thrombin provide insight into the origins of the increased affinities. Our work demonstrates that facile chemical modification of a simple DNA aptamer can be used to significantly improve its binding affinity for a well-established pharmacological target protein.
Nucleosides, Nucleotides & Nucleic Acids | 2017
Rafał Dolot; Milena Sobczak; Barbara Mikołajczyk; Barbara Nawrot
ABSTRACT A 52-nucleotide DNA/2′-OMe-RNA oligomer mimicking 10–23 DNAzyme in the complex with its substrate was synthesized, purified and crystallized by the hanging-drop method using 0.8 M sodium potassium tartrate as a precipitant. A data set to 1.21 Å resolution was collected from a monocrystal at 100 K using synchrotron radiation on a beamline BL14.1 at BESSY. The crystal belonged to the P21 group with unit-cell a = 49.42, b = 24.69, c = 50.23, β = 118.48.
Organic and Biomolecular Chemistry | 2015
Katarzyna Jastrzębska; Anna Maciaszek; Rafał Dolot; Grzegorz Bujacz; Piotr Guga
3-O-(2-Thio-4,4-pentamethylene-1,3,2-oxathiaphospholane) derivatives of LNA-type nucleosides (LNA-OTPs, 2a-d; B = Thy, Ade(Bz), Cyt(Bz), Gua(dmf), respectively) were synthesized and separated into pure P-diastereomers. X-ray analysis allowed for assignment of the absolute configuration of the phosphorus atom in the detritylated, fast-eluting diastereomer 2a. The diastereomerically pure LNA-OTP monomers were used in solid phase synthesis of P-stereodefined chimeric PS-(DNA/LNA) 11-mers containing 2-3 LNA units. Formally, among the phosphorothioate oligomers the biggest enhancement in thermal stability of Watson-Crick paired duplexes was found for [SP-PS]-(DNA/LNA)/RNA duplexes (on average 8.2 °C per LNA nucleotide), followed by [RP-PS]-(DNA/LNA)/RNA (6.3 °C), [RP-PS]-(DNA/LNA)/DNA (3.8 °C) and [SP-PS]-(DNA/LNA)/DNA (2.4 °C per LNA nucleotide). However, detailed analysis of the thermal dissociation data showed that the thermal stability of (PS-LNA)-containing duplexes does not depend on the spatial orientation of the sulfur atoms. This conclusion received support from CD measurements.