Rafał R. Starzyński
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rafał R. Starzyński.
Journal of Biological Chemistry | 2011
Agnieszka Styś; Bruno Galy; Rafał R. Starzyński; Ewa Smuda; Jean-Claude Drapier; Paweł Lipiński; Cécile Bouton
In mammals, iron regulatory proteins (IRPs) 1 and 2 posttranscriptionally regulate expression of genes involved in iron metabolism, including transferrin receptor 1, the ferritin (Ft) H and L subunits, and ferroportin by binding mRNA motifs called iron responsive elements (IREs). IRP1 is a bifunctional protein that mostly exists in a non-IRE-binding, [4Fe-4S] cluster aconitase form, whereas IRP2, which does not assemble an Fe-S cluster, spontaneously binds IREs. Although both IRPs fulfill a trans-regulatory function, only mice lacking IRP2 misregulate iron metabolism. NO stimulates the IRE-binding activity of IRP1 by targeting its Fe-S cluster. IRP2 has also been reported to sense NO, but the intrinsic function of IRP1 and IRP2 in NO-mediated regulation of cellular iron metabolism is controversial. In this study, we exposed bone marrow macrophages from Irp1−/− and Irp2−/− mice to NO and showed that the generated apo-IRP1 was entirely responsible for the posttranscriptional regulation of transferrin receptor 1, H-Ft, L-Ft, and ferroportin. The powerful action of NO on IRP1 also remedies the defects of iron storage found in IRP2-null bone marrow macrophages by efficiently reducing Ft overexpression. We also found that NO-dependent IRP1 activation, resulting in increased iron uptake and reduced iron sequestration and export, maintains enough intracellular iron to fuel the Fe-S cluster biosynthetic pathway for efficient restoration of the citric acid cycle aconitase in mitochondria. Thus, IRP1 is the dominant sensor and transducer of NO for posttranscriptional regulation of iron metabolism and participates in Fe-S cluster repair after exposure to NO.
Cellular and Molecular Life Sciences | 2013
Paweł Lipiński; Agnieszka Styś; Rafał R. Starzyński
Molecular iron metabolism and its regulation are least well understood in the fetal and early postnatal periods of mammalian ontogenic development. The scope of this review is to summarize recent progress in uncovering the molecular mechanisms of fetal iron homeostasis, introduce the molecules involved in iron transfer across the placenta, and briefly explain the role of iron transporters in the absorption of this microelement during early postnatal life. These issues are discussed and parallels are drawn with the relatively well-established system for elemental and heme iron regulation in adult mammals. We conclude that detailed investigations into the regulatory mechanisms of iron metabolism at early stages of development are required in order to optimize strategies to prevent neonatal iron deficiency. We propose that newborn piglets represent a suitable animal model for studies on iron deficiency anemia in neonates.
Biochemical Journal | 2013
Rafał R. Starzyński; François Canonne-Hergaux; Małgorzata Lenartowicz; Wojciech Krzeptowski; Alexandra Willemetz; Agnieszka Styś; Joanna Bierła; Piotr Pietrzak; Tomasz Dziaman; Paweł Lipiński
HO1 (haem oxygenase 1) and Fpn (ferroportin) are key proteins for iron recycling from senescent red blood cells and therefore play a major role in controlling the bioavailability of iron for erythropoiesis. Although important aspects of iron metabolism in HO1-deficient (Hmox1-/-) mice have already been revealed, little is known about the regulation of Fpn expression and its role in HO1 deficiency. In the present study, we characterize the cellular and systemic factors influencing Fpn expression in Hmox1-/- bone marrow-derived macrophages and in the liver and kidney of Hmox1-/- mice. In Hmox1-/- macrophages, Fpn protein was relatively highly expressed under high levels of hepcidin in culture medium. Similarly, despite high hepatic hepcidin expression, Fpn is still detected in Kupffer cells and is also markedly enhanced at the basolateral membrane of the renal tubules of Hmox1-/- mice. Through the activity of highly expressed Fpn, epithelial cells of the renal tubules probably take over the function of impaired system of tissue macrophages in recycling iron accumulated in the kidney. Moreover, although we have found increased expression of FLVCR (feline leukaemia virus subgroup C receptor), a haem exporter, in the kidneys of Hmox1-/- mice, haem level was increased in these organs. Furthermore, we show that iron/haem-mediated toxicity are responsible for renal injury documented in the kidneys of Hmox1-/- mice.
Biochemical Journal | 2009
Rafał R. Starzyński; François Canonne-Hergaux; Alexandra Willemetz; M. A. Gralak; Jarosław Woliński; Agnieszka Styś; Jarosław Olszak; Paweł Lipiński
The continuous recycling of haem iron following phagocytosis and catabolism of senescent and damaged red blood cells by macrophages is a crucial process in the maintenance of systemic iron homoeostasis. However, little is known about macrophage iron handling in haemolytic states resulting from a deficiency in antioxidant defences. Our observations indicate that the recently described chronic, but moderate regenerative, haemolytic anaemia of aged SOD1 (superoxide dismutase 1)-knockout mice is associated with red blood cell modifications and sensitivity to both intra- and extra-vascular haemolysis. In the present study, we have characterized the molecular pathways of iron turnover in the liver of Sod1-deficient mice. Despite iron accumulation in liver macrophages, namely Kupffer cells, we did not measure any significant change in non-haem liver iron. Interestingly, in Kupffer cells, expression of the rate-limiting enzyme in haem degradation, haem oxygenase-1, and expression of the iron exporter ferroportin were both up-regulated, whereas the hepcidin mRNA level in the liver was decreased in Sod1-/- mice. These results suggest that concerted changes in the hepatic expression of iron- and haem-related genes in response to haemolytic anaemia in Sod1-/- mice act to reduce toxic iron accumulation in the liver and respond to the needs of erythropoiesis.
PLOS ONE | 2013
Rafał R. Starzyński; Coby M. Laarakkers; Harold Tjalsma; Dorine W. Swinkels; Marek Pieszka; Agnieszka Styś; Michał Mickiewicz; Paweł Lipiński
The aim of the study was to establish an optimized protocol of iron dextran administration to pig neonates, which better meets the iron demand for erythropoiesis. Here, we monitored development of red blood cell indices, plasma iron parameters during a 28-day period after birth (till the weaning), following intramuscular administration of different concentrations of iron dextran to suckling piglets. To better assess the iron status we developed a novel mass spectrometry assay to quantify pig plasma levels of the iron-regulatory peptide hormone hepcidin-25. This hormone is predominantly secreted by the liver and acts as a negative regulator of iron absorption and reutilization. The routinely used protocol with high amount of iron resulted in the recovery of piglets from iron deficiency but also in strongly elevated plasma hepcidin-25 levels. A similar protocol with reduced amounts of iron improved hematological status of piglets to the same level while plasma hepcidin-25 levels remained low. These data show that plasma hepcidin-25 levels can guide optimal dosing of iron treatment and pave the way for mixed supplementation of piglets starting with intramuscular injection of iron dextran followed by dietary supplementation, which could be efficient under condition of very low plasma hepcidin-25 level.
Mammalian Genome | 2006
Tatiana Adamowicz; Krzysztof Flisikowski; Rafał R. Starzyński; Lech Zwierzchowski; Marek Świtoński
Leptin is expressed mainly by adipocytes and plays a crucial role in the regulation of energy expenditure, food intake, and adiposity. Using PCR-heteroduplex analysis and sequencing, we investigated a C/G substitution in the promoter region of the bovine leptin gene. Application of the electrophoretic mobility shift assay showed that the C→G transversion decreased the leptin gene promoter binding capacity for nuclear proteins. With real-time PCR and Western blotting, we showed that the leptin expression level was higher in cattle with the CC than with the GG genotype.
Biochemical Journal | 2006
Rafał R. Starzyński; Ana Sofia Gonçalves; Françoise Muzeau; Zofia Tyrolczyk; Ewa Smuda; Jean-Claude Drapier; Carole Beaumont; Paweł Lipiński
RNA-binding activity of IRP1 (iron regulatory protein 1) is regulated by the insertion/extrusion of a [4Fe-4S] cluster into/from the IRP1 molecule. NO (nitic oxide), whose ability to activate IRP1 by removing its [4Fe-4S] cluster is well known, has also been shown to down-regulate expression of the IRP1 gene. In the present study, we examine whether this regulation occurs at the transcriptional level. Analysis of the mouse IRP1 promoter sequence revealed two conserved putative binding sites for transcription factor(s) regulated by NO and/or changes in intracellular iron level: Sp1 (promoter-selective transcription factor 1) and MTF1 (metal transcription factor 1), plus GAS (interferon-gamma-activated sequence), a binding site for STAT (signal transducer and activator of transcription) proteins. In order to define the functional activity of these sequences, reporter constructs were generated through the insertion of overlapping fragments of the mouse IRP1 promoter upstream of the luciferase gene. Transient expression assays following transfection of HuH7 cells with these plasmids revealed that while both the Sp1 and GAS sequences are involved in basal transcriptional activity of the IRP1 promoter, the role of the latter is predominant. Analysis of protein binding to these sequences in EMSAs (electrophoretic mobility-shift assays) using nuclear extracts from mouse RAW 264.7 macrophages stimulated to synthesize NO showed a significant decrease in the formation of Sp1-DNA and STAT-DNA complexes, compared with controls. We have also demonstrated that the GAS sequence is involved in NO-dependent down-regulation of IRP1 transcription. Further analysis revealed that levels of STAT5a and STAT5b in the nucleus and cytosol of NO-producing macrophages are substantially lower than in control cells. These findings provide evidence that STAT5 proteins play a role in NO-mediated down-regulation of IRP1 gene expression.
Mutation Research-genetic Toxicology and Environmental Mutagenesis | 2008
Marcin Kruszewski; Teresa Iwaneńko; Teresa Bartłomiejczyk; Jarosław Woliński; Rafał R. Starzyński; M. A. Gralak; R. Zabielski; Paweł Lipiński
The pig is born with limited iron supplies. If not supplemented, piglets dramatically loose their body iron stores during the first few days of postnatal life. The aim of this study was to investigate the influence of hepatic iron content on susceptibility of blood cells to oxidative stress. Four 1-day-old and three 7-days-old animals were used in this study. The alkaline version of the comet assay was used to measure DNA damage. As expected, iron body stores of non-supplemented animals decrease significantly during the first 4 days of life. However, no difference in background DNA damage was found between untreated lymphocytes from these two groups of animals, despite the difference in their hepatic iron content. Interestingly, DNA damage induced by H2O2 and X-radiation in lymphocytes taken from 1-day-old piglets was significantly higher than in those taken from 7-days-old animals. In contrast, NaOCl or tert-butyl-hydroxide also induced significant amounts of DNA damage, but no differences between the two groups of piglets were found. Our data show that decreased hepatic iron content corresponds with decreased susceptibility of blood lymphocytes to oxidative stressors.
Journal of Experimental Zoology | 2010
Małgorzata Lenartowicz; Krzysztof Wieczerzak; Wojciech Krzeptowski; Paulina Dobosz; Paweł Grzmil; Rafał R. Starzyński; Paweł Lipiński
In all living organisms trace element metabolism and transport are closely regulated at the genetic level. Copper is one of the essential microelements required for normal growth and development. The main organ in mammals involved in copper metabolism is the liver. It is known that copper metabolism in the liver is controlled by ATP7B, a P-type ATP-ase encoded by the Atp7b gene. However, little is known about the expression and function of the second important P-type ATP-ase, ATP7A encoded by the Atp7a gene. In this study we investigated the expression of the Atp7a gene in the liver during postnatal development in mice. We analyzed expression of Atp7a gene in the livers from neonatal (P.05), young (P14) and adult (P240) mice using RT-PCR and real-time PCR method. We found a transcript of the Atp7a gene in the liver of all investigated animals. Moreover, we found that the expression of the Atp7a gene in the liver in mice is age-dependent and decreases during postnatal development. Interestingly, the Atp7a expression in adult mice is very low in comparison with neonatal and young animals. Western blot analysis revealed that Atp7a is expressed not only at mRNA level but also at the protein level in the liver of all investigated animals. The expression of Atp7a gene and ATP7A protein was also confirmed in primary hepatocytes from adult mouse. Demonstration of the hepatic Atp7a gene expression may shed light on new aspects of copper metabolism in the liver in mammals.
DNA and Cell Biology | 2012
Edyta Juszczuk-Kubiak; Rafał R. Starzyński; K. Wicińska; Krzysztof Flisikowski
The myocyte enhancer factor 2A (MEF2A) gene encodes a member of the myocyte enhancer factor 2 (MEF2) protein family that is involved in vertebrate skeletal, cardiac, and smooth muscle development and differentiation during myogenesis. According to recent studies, MEF2 genes might be major regulators of postnatal skeletal muscle growth; thus, they are considered to be important, novel candidates for muscle development and body growth in farm animals. The aim of the present study was to search for polymorphisms in the bovine MEF2A gene and analyze their effect on the MEF2A mRNA expression level in the longissimus dorsi muscle of Polish Holstein-Fresian cattle. In total, 4094 bp of the whole coding sequence and the promoter region of MEF2A were re-sequenced in 30 animals, resulting in the detection of 6 novel variants as well as one previously reported SNP. Three linked mutations in the promoter region (-780T/G, g.-768T/G, and g.-222A/G) and only two genotypes were identified in two Polish breeds (TTA/TTA and TTA/GGG). Three SNPs in the coding region [g.1599G/A (421aa), g.1626G/A (429aa), and g.1641G/A (434aa)] appeared to be silent substitutions and segregated as two intragene haplotypes: GGG and AAA. Expression analysis showed that the mutations in the promoter region are highly associated with the MEF2A mRNA level in the longissimus dorsi muscle of bulls carrying two different genotypes. The higher MEF2A mRNA level was estimated in the muscle of bulls carrying the TTA/TTA (p<0.01) genotype as compared with those with TTA/GGG. The results obtained suggest that the nucleotide sequence mutation in MEF2A might be useful marker for body growth traits in cattle.