Rafał Rakoczy
West Pomeranian University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rafał Rakoczy.
Electromagnetic Biology and Medicine | 2014
Paweł Nawrotek; Karol Fijałkowski; Magdalena Struk; Marian Kordas; Rafał Rakoczy
Abstract This study presents results of research on the influence of rotating magnetic field (RMF) of the induction of 30 mT and the frequency of 50 Hz on the growth dynamics and cell metabolic activity of E. coli and S. aureus, depending on the exposure time. The studies showed that the RMF caused an increase in the growth and cell metabolic activity of all the analyzed bacterial strains, especially in the time interval t = 30 to 150 min. However, it was also found that the optical density and cell metabolic activity after exposition to RMF were significantly higher in S. aureus cultures. In turn, the study of growth dynamics, revealed a rapid and a significant decrease in these values from t = 90 min) in the case of E. coli samples. The obtained results prove that RMF (B = 30 mT, f = 50 Hz) has a stimulatory effect on the growth and metabolic activity of E. coli and S. aureus. Furthermore, taking into account the time of exposure, stronger influence of RMF on the viability was observed in S. aureus cultures, which may indicate that this effect depends on the shape of the exposed cells.
Carbohydrate Polymers | 2015
Karol Fijałkowski; Anna Żywicka; Radosław Drozd; Agata Niemczyk; Adam Junka; Dorota Peitler; Marian Kordas; Maciej Konopacki; Patrycja Szymczyk; Miroslawa El Fray; Rafał Rakoczy
The aim of the study was to assess the influence of rotating magnetic field (RMF) on production rate and quality parameters of bacterial cellulose synthetized by Glucanacetobacter xylinus. Bacterial cultures were exposed to RMF (frequency f=50Hz, magnetic induction B=34mT) for 72h at 28°C. The study revealed that cellulose obtained under RMF influence displayed higher water absorption, lower density and less interassociated microfibrils comparing to unexposed control. The application of RMF significantly increased the amount of obtained wet cellulose pellicles but decreased the weight and thickness of dry cellulose. Summarizing, the exposure of cellulose-synthesizing G. xylinus to RMF alters cellulose biogenesis and may offer a new biotechnological tool to control this process. As RMF-modified cellulose displays better absorbing properties comparing to non-modified cellulose, our finding, if developed, may find application in the production of dressings for highly exudative wounds.
Electromagnetic Biology and Medicine | 2015
Karol Fijałkowski; Paweł Nawrotek; Magdalena Struk; Marian Kordas; Rafał Rakoczy
Abstract The aim of the present study was to determine the effect of the rotating magnetic field (RMF) on the growth, cell metabolic activity and biofilm formation by S. aureus, E. coli, A. baumannii, P. aeruginosa, S. marcescens, S. mutans, C. sakazakii, K. oxytoca and S. xylosus. Bacteria were exposed to the RMF (RMF magnetic induction B = 25–34 mT, RMF frequency f = 5–50 Hz, time of exposure t = 60 min, temperature of incubation 37 °C). The persistence of the effect of exposure (B = 34 mT, f = 50 Hz, t = 60 min) on bacteria after further incubation (t = 300 min) was also studied. The work showed that exposure to RMF stimulated the investigated parameters of S. aureus, E. coli, S. marcescens, S. mutans, C. sakazakii, K. oxytoca and S. xylosus, however inhibited cell metabolic activity and biofilm formation by A. baumannii and P. aeruginosa. The results obtained in this study proved, that the RMF, depending on its magnetic induction and frequency can modulate functional parameters of different species of bacteria.
Chemical Papers | 2016
Grzegorz Story; Marian Kordas; Rafał Rakoczy
This study reports the research results on a mixing process using a stirred tank mixer under the action of a rotating magnetic field (RMF). Dimensionless correlations are proposed to predict the power consumption and mixing time for the mixing systems analysed. The results suggest that the mixing behaviour of the experimental set-ups tested may be assessed using the dimensionless mixing energy as the product of the power input and mixing time. In addition, an innovative strategy is proposed on the basis of the synergistic effect of the rotational Rushton turbine and the RMF generator. The values of the dimensionless energy thus obtained were used to compare the mixing process performed by the mixing devices tested. It is shown that the mixing process under the RMF action has significantly higher values of energy consumption than the conventional Rushton turbine. The total energy consumption for the mixing process performed by the RMF mixer may be reduced by concomitant use of a rotational agitator.
Electromagnetic Biology and Medicine | 2017
Karol Fijałkowski; Anna Żywicka; Radosław Drozd; Adam Junka; Dorota Peitler; Marian Kordas; Maciej Konopacki; Patrycja Szymczyk; Rafał Rakoczy
ABSTRACT The current study describes properties of bacterial cellulose (BC) obtained from Komagataeibacter xylinus cultures exposed to the rotating magnetic field (RMF) of 50 Hz frequency and magnetic induction of 34 mT for controlled time during 6 days of cultivation. The experiments were carried out in the customized RMF exposure system adapted for biological studies. The obtained BC displayed an altered micro-structure, degree of porosity, and water-related parameters in comparison to the non-treated, control BC samples. The observed effects were correlated to the duration and the time of magnetic exposure during K. xylinus cultivation. The most preferred properties in terms of water-related properties were found for BC obtained in the setting, where RMF generator was switched off for the first 72 h of cultivation and switched on for the next 72 h. The described method of BC synthesis may be of special interest for the production of absorbent, antimicrobial-soaked dressings and carrier supports for the immobilization of microorganisms and proteins.
Journal of Biomaterials Applications | 2016
Karolina Urbas; Magdalena Jedrzejczak-Silicka; Rafał Rakoczy; Daniel Zaborski; Ewa Mijowska
The effect of hybrid material—graphene flakes with Fe3O4 nanospheres (GO-Fe3O4), graphene oxide (GO) and magnetite nanospheres (Fe3O4) in rotating magnetic field on mammalian cells metabolism has been studied. Several reports shown that exposure to magnetic field may have influence on cellular membrane permeability. Thus, the aim of presented study was to determine the cellular response of L929 fibroblast cells to nanomaterials and rotating magnetic field for 8-h exposure experiment. The GO had tendency to adsorb proteins, thus cell metabolism was decreased and the effect of that mechanism was enhanced by impact of nanospheres and rotating magnetic field. The highest reduction of cellular metabolism was recorded for WST-1 and NR assays at concentration 100 µg/mL of all tested nanomaterials and magnetic induction value 10.06 mT. The lactate dehydrogenase leakage assay has shown significant changes in membrane permeability. Further studies need to be carried out to precisely determine the mechanism of that process.
Polish Journal of Chemical Technology | 2017
Karol Fijałkowski; Radosław Drozd; Anna Żywicka; Adam Junka; Marian Kordas; Rafał Rakoczy
Abstract The aim of the present study was to evaluate the impact of a rotating magnetic field (RMF) on cellular and biochemical properties of Gluconacetobacter xylinus during the process of cellulose synthesis by these bacteria. The application of the RMF during bacterial cellulose (BC) production intensified the biochemical processes in G. xylinus as compared to the RMF-unexposed cultures. Moreover, the RMF had a positive impact on the growth of cellulose-producing bacteria. Furthermore, the application of RMF did not increase the number of mutants unable to produce cellulose. In terms of BC production efficacy, the most favorable properties were found in the setting where RMF generator was switched off for the first 72 h of cultivation and switched on for the further 72 h. The results obtained can be used in subsequent studies concerning the optimization of BC production using different types of magnetic fields including RMF, especially.
Carbohydrate Polymers | 2017
Radosław Drozd; Rafał Rakoczy; Maciej Konopacki; Artur Frąckowiak; Karol Fijałkowski
The main aim of the current study was to evaluate the usefulness of the two-dimensional correlation analysis (2DCorr) technique in assessing the physicochemical properties of bacterial cellulose (BC) depending on the synthesis time and Komagataeibacter xylinus strain used for its production. It was demonstrated that 2DCorr analysis allows to characterize substantial changes in the structure of BC at the molecular level occurring during its synthesis, which are difficult to determine using ATR-FTIR spectral analysis. Furthermore, it was found that 2DCorr analysis allows to identify the differences in the structure and the properties of BC according to the bacterial strain used for its synthesis. It was concluded that 2DCorr analysis of the ATR-FTIR spectra may be a useful tool for controlling BC production in order to obtain material with the desired properties.
Engineering in Life Sciences | 2016
Karol Fijałkowski; Anna Żywicka; Radosław Drozd; Adam Junka; Dorota Peitler; Marian Kordas; Maciej Konopacki; Patrycja Szymczyk; Miroslawa El Fray; Rafał Rakoczy
Rotating magnetic field (RMF) is an interesting alternative to conventional bacterial cellulose (BC) production methods. The BC synthesis processes may be affected by RMF, which facilitates the transfer of oxygen and nutrients from the media to the microbial cells. RMF may also directly influence the various physical and chemical properties of BC. The main aim of the present study was to evaluate the impact of the RMF on the BC in regard to its yield and material properties. The correlation between the efficiency of polymer production and the different time of exposure to the RMF was also analyzed to determine the conditions of lower energy consumption during the cellulose formation process. It was found that the Gluconacetobacter xylinus cultures exposed to the RMF for a half of the time of the entire cellulose production process (72 h), considering the results obtained in controls, synthesized BC more effectively than bacteria continuously exposed to the RMF for 144 h. Furthermore, the application of the RMF, regardless of the exposure mode, did not negatively affect the polymer material properties. It was concluded that the use of the RMF may provide a novel technique for altering cellulose biogenesis and may be used in multiple biotechnological applications.
International Journal of Polymer Science | 2016
Karol Fijałkowski; Rafał Rakoczy; Anna Żywicka; Radosław Drozd; Beata Zielińska; Karolina Wenelska; Krzysztof Cendrowski; Dorota Peitler; Marian Kordas; Maciej Konopacki; Ewa Mijowska
The aim of the study was to assess the influence of rotating magnetic field (RMF) on the morphology, physicochemical properties, and the water holding capacity of bacterial cellulose (BC) synthetized by Gluconacetobacter xylinus. The cultures of G. xylinus were exposed to RMF of frequency that equals 50 Hz and magnetic induction 34 mT for 3, 5, and 7 days during cultivation at 28°C in the customized RMF exposure system. It was revealed that BC exposed for 3 days to RMF exhibited the highest water retention capacity as compared to the samples exposed for 5 and 7 days. The observation was confirmed for both the control and RMF exposed BC. It was proved that the BC exposed samples showed up to 26% higher water retention capacity as compared to the control samples. These samples also required the highest temperature to release the water molecules. Such findings agreed with the observation via SEM examination which revealed that the structure of BC synthesized for 7 days was more compacted than the sample exposed to RMF for 3 days. Furthermore, the analysis of 2D correlation of Fourier transform infrared spectra demonstrated the impact of RMF exposure on the dynamics of BC microfibers crystallinity formation.