Rafał Ślusarz
University of Gdańsk
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rafał Ślusarz.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Yi He; Magdalena A. Mozolewska; Paweł Krupa; Adam K. Sieradzan; Tomasz Wirecki; Adam Liwo; Khatuna Kachlishvili; Shalom Rackovsky; Dawid Jagieła; Rafał Ślusarz; Cezary Czaplewski; Stanisław Ołdziej; Harold A. Scheraga
Significance With the example of the coarse-grained United Residue model of polypeptide chains, this paper demonstrates that the physics-based approach for protein-structure prediction can lead to exceptionally good results when correct domain packing is an issue, even for a highly homologous target. The reason for this is probably that emphasis is placed on energetically favorable residue–residue interactions, including those with residues in relatively flexible linker regions; these regions are usually very different in the target compared with those of proteins in the databases used for template-based modeling. The results suggest that a combination of bioinformatics and a physics-based approach could result in a major increase in the prediction capacity of existing approaches. The performance of the physics-based protocol, whose main component is the United Residue (UNRES) physics-based coarse-grained force field, developed in our laboratory for the prediction of protein structure from amino acid sequence, is illustrated. Candidate models are selected, based on probabilities of the conformational families determined by multiplexed replica-exchange simulations, from the 10th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP10). For target T0663, classified as a new fold, which consists of two domains homologous to those of known proteins, UNRES predicted the correct symmetry of packing, in which the domains are rotated with respect to each other by 180° in the experimental structure. By contrast, models obtained by knowledge-based methods, in which each domain is modeled very accurately but not rotated, resulted in incorrect packing. Two UNRES models of this target were featured by the assessors. Correct domain packing was also predicted by UNRES for the homologous target T0644, which has a similar structure to that of T0663, except that the two domains are not rotated. Predictions for two other targets, T0668 and T0684_D2, are among the best ones by global distance test score. These results suggest that our physics-based method has substantial predictive power. In particular, it has the ability to predict domain–domain orientations, which is a significant advance in the state of the art.
Journal of Molecular Modeling | 2014
Adam Liwo; Maciej Baranowski; Cezary Czaplewski; Ewa I. Gołaś; Yi He; Dawid Jagieła; Paweł Krupa; Maciej Maciejczyk; Mariusz Makowski; Magdalena A. Mozolewska; Andrei Niadzvedtski; Stanisław Ołdziej; Harold A. Scheraga; Adam K. Sieradzan; Rafał Ślusarz; Tomasz Wirecki; Yanping Yin; Bartłomiej Zaborowski
AbstractA unified coarse-grained model of three major classes of biological molecules—proteins, nucleic acids, and polysaccharides—has been developed. It is based on the observations that the repeated units of biopolymers (peptide groups, nucleic acid bases, sugar rings) are highly polar and their charge distributions can be represented crudely as point multipoles. The model is an extension of the united residue (UNRES) coarse-grained model of proteins developed previously in our laboratory. The respective force fields are defined as the potentials of mean force of biomacromolecules immersed in water, where all degrees of freedom not considered in the model have been averaged out. Reducing the representation to one center per polar interaction site leads to the representation of average site–site interactions as mean-field dipole–dipole interactions. Further expansion of the potentials of mean force of biopolymer chains into Kubo’s cluster-cumulant series leads to the appearance of mean-field dipole–dipole interactions, averaged in the context of local interactions within a biopolymer unit. These mean-field interactions account for the formation of regular structures encountered in biomacromolecules, e.g., α-helices and β-sheets in proteins, double helices in nucleic acids, and helicoidally packed structures in polysaccharides, which enables us to use a greatly reduced number of interacting sites without sacrificing the ability to reproduce the correct architecture. This reduction results in an extension of the simulation timescale by more than four orders of magnitude compared to the all-atom representation. Examples of the performance of the model are presented. FigureComponents of the Unified Coarse Grained Model (UCGM) of biological macromolecules
Journal of Peptide Science | 2013
Magdalena J. Ślusarz; Emilia Sikorska; Rafał Ślusarz
Vasopressin and oxytocin receptors belong to the superfamily of G protein‐coupled receptors and play an important role in many physiological functions. They are also involved in a number of pathological conditions being important drug targets. In this work, four vasopressin analogues substituted at position 2 with 3,3′‐diphenylalanine have been docked into partially flexible vasopressin and oxytocin receptors. The bulky residue at position 2 acts as a structural restraint much stronger in the oxytocin receptor (OTR) than in the vasopressin V2 receptor (V2R), resulting in a different location of the analogues in these receptors. This explains the different, either agonistic or antagonistic, activities of the analogues in V2R and OTR, respectively. In all complexes, the conserved polar residues serve as anchor points for the ligand both in OTR and V2R. Strong interactions of the C‐terminus of analogue II ([Mpa1,d‐Dpa2,Val4,d‐Arg8]VP) with extracellular loop 3 may be responsible for its highest activity at V2R. It also appears that V2R adapts more readily to the docking analogues by conformational changes in the aromatic side chains triggering receptor activation. A weak activity at V1a vasopressin receptor appears to be caused by weak receptor–ligand interactions. Results of this study may facilitate a rational design of new analogues with the highest activity/selectivity at vasopressin and OTRs. Copyright
Carbohydrate Research | 2014
Rafał Ślusarz; Monika Szulc; Janusz Madaj
Proper understanding of the mechanisms of binding to Gram-positive bacteria cell wall layers-especially to the peptidoglycan (PG) layer, seems to be crucial for proper development of new drug candidates which are effective against these bacteria. In this work we have constructed two different models of the Gram-positive bacteria PG layer: the layered and the scaffold models. PG conformational changes during geometry optimization, models relaxation, and molecular dynamics were described and discussed. We have found that the border surface of both PG layer models differs from the surface located away from the edge of models and the chains formed by disaccharide units prefer helix-like conformation. This curling of PG chains significantly affects the shape of antibiotic-accessible surface and the process is thus crucial for new drug development. Glycopeptide antibiotics effective against Gram-positive bacteria, such as vancomycin and its semisynthetic derivatives-oritavancin and telavancin, bind to d-alanyl-d-alanine stem termini on the peptidoglycan precursors of the cell wall. This binding inhibits cross-linking between the peptides and subsequently prevents cell wall synthesis. In this study some of the aspects of conformational freedom of vancomycin and restrictions from the modifications of vancomycin structure introduced into oritavancin and telavancin and five other vancomycin derivatives (with addition of 2-acetamido-2-deoxy-β-d-galactopyranosylamine, 2-acetamido-2-deoxy-β-d-glucopyranosylamine, 1-amine-1-deoxy-d-glucitol, 2-amino-2-deoxy-d-galactitol, or 2-amino-2-deoxy-d-glucitol to the C-terminal amino acid group in the vancomycin) are presented and discussed. The resulting molecular dynamics trajectories, root mean square deviation changes of aglycon and saccharide moieties as well as a comparative study of possible interactions with cyclic and chain forms of modified groups have been carried out, measured, and analyzed. Energetically advantageous conformations show close similarity to the structures known from the experimental data, but the diversity of others suggest very high conformational freedom of all modeled antibiotics and vancomycin derivatives. Alditol derivatives move closer to the peptidoglycan chain more easily but they also form intramolecular interactions more frequently than their homologous cyclic forms. One of the proposed derivatives seems to be a promising agent which is efficient in treatment of infections caused by Gram-positive bacteria.
Central European Journal of Chemistry | 2011
Rafał Ślusarz; Magdalena J. Ślusarz; Justyna Samaszko; Janusz Madaj
Six complexes of vancomycin and peptidoglycan precursors were studied via molecular dynamics simulations. The interactions between the antibiotic and peptidoglycan fragments were identified and described in detail. All six studied modifications of the peptidoglycan precursor resulted in a weakening of the interaction with vancomycin when comparing to the native D-Ala-D-Ala-terminated fragment. It was confirmed that the N-terminus of the vancomycin is directly responsible for peptidoglycan recognition and antimicrobial activity. In simulated systems, the saccharide part of the antibiotic interacts with peptide precursors, thus it could also be important for antimicrobial activity. The complex terminated with D-Lac is the only one in which there is a weak interaction with the sugar moiety in the simulated systems. Analysis of conformational changes is a major scope of this work. The lack of interactions resulting from modification of the peptidoglycan precursors (D-Lac, D-Ser or other substitution) would be counterbalanced by proper modifications of the vancomycin moiety, especially the saccharide part of vancomycin.
Journal of Biomolecular Structure & Dynamics | 2005
Emilia Sikorska; Rafał Ślusarz; Bernard Lammek
Abstract The solution conformations of two potent antagonists of bradykinin (Arg1-Pro2-Pro3-Gly4- Phe5-Ser6-Pro7-Phe8-Arg9), [Aca-1, DArg0, Hyp3, Thi5, DPhe7,(N-Bzl)Gly8]BK (1) and [Aaa- 1, DArg0, Hyp3, Thi5,(2-DNal)7, Thi8]BK (2), were studied by using 2D NMR spectroscopy in DMSO-dg and molecular dynamics simulations. The NMR spectra of peptide 1 reveals the existence of at least two isomers arising from isomerization across the DPhe7-(N-Bzl)Gly8peptide bond. The more populated isomer possesses the cis peptide bond at this position. The ratio of cis/trans isomers amounted to 7:3. With both antagonists, the NMR data indicate a β-turn structure for the Hyp3-Gly4 residues. In addition, for peptide 2, position 2,3 is likely to be occupied by turn-like structures. The cis peptide bond between DPhe7 and (N- Bzl)Gly8 in analogue 1 suggests type VI β-turn at position 7,8. The molecular dynamics runs were performed on both peptides in DMSO solution. The results indicate that the structure of peptide 1 is characterized by type VIb β-turn comprising residues Ser-Arg9 and the βI or βII-turn involving the Pro2-Thi5 fragment, whereas peptide 2 shows the tendency towards the formation of type I β-turn at position 2,3. The structures of both antagonists are stabilized by a salt bridge between the guanidine moiety of Arg1 and the carboxyl group of Arg9. Moreover, the side chain of DArg0 is apart of the rest of molecule and is not involved in structural elements except for a few calculated structures.
Scientific Reports | 2018
Chen Keasar; Liam J. McGuffin; Björn Wallner; Gaurav Chopra; Badri Adhikari; Debswapna Bhattacharya; Lauren Blake; Leandro Oliveira Bortot; Renzhi Cao; B. K. Dhanasekaran; Itzhel Dimas; Rodrigo Antonio Faccioli; Eshel Faraggi; Robert Ganzynkowicz; Sambit Ghosh; Soma Ghosh; Artur Giełdoń; Lukasz Golon; Yi He; Lim Heo; Jie Hou; Main Khan; Firas Khatib; George A. Khoury; Chris A. Kieslich; David E. Kim; Paweł Krupa; Gyu Rie Lee; Hongbo Li; Jilong Li
Every two years groups worldwide participate in the Critical Assessment of Protein Structure Prediction (CASP) experiment to blindly test the strengths and weaknesses of their computational methods. CASP has significantly advanced the field but many hurdles still remain, which may require new ideas and collaborations. In 2012 a web-based effort called WeFold, was initiated to promote collaboration within the CASP community and attract researchers from other fields to contribute new ideas to CASP. Members of the WeFold coopetition (cooperation and competition) participated in CASP as individual teams, but also shared components of their methods to create hybrid pipelines and actively contributed to this effort. We assert that the scale and diversity of integrative prediction pipelines could not have been achieved by any individual lab or even by any collaboration among a few partners. The models contributed by the participating groups and generated by the pipelines are publicly available at the WeFold website providing a wealth of data that remains to be tapped. Here, we analyze the results of the 2014 and 2016 pipelines showing improvements according to the CASP assessment as well as areas that require further adjustments and research.
Journal of Molecular Graphics & Modelling | 2018
Agnieszka Karczyńska; Magdalena A. Mozolewska; Paweł Krupa; Artur Giełdoń; Krzysztof Kamil Bojarski; Bartłomiej Zaborowski; Adam Liwo; Rafał Ślusarz; Magdalena J. Ślusarz; Jooyoung Lee; Keehyoung Joo; Cezary Czaplewski
Knowledge-based methods are, at present, the most effective ones for the prediction of protein structures; however, their results heavily depend on the similarity of a target sequence to those of proteins with known structures. On the other hand, the physics-based methods, although still less accurate and more expensive to execute, are independent of databases and give reasonable results where the knowledge-based methods fail because of weak sequence similarity. Therefore, a plausible approach seems to be the use of knowledge-based methods to determine the sections of the structures that correspond to sufficient sequence similarity and physics-based methods to determine the remaining structure. By participating in the 12th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP12) as the KIAS-Gdansk group, we tested our recently developed hybrid approach, in which protein-structure prediction is carried out by using the physics-based UNRES coarse-grained energy function, with restraints derived from the server models. Best predictions among all groups were obtained for 2 targets and 80% of our models were in the upper 50% of the models submitted to CASP. Our method was also able to exclude, with about 70% confidence, the information from the servers that performed poorly on a given target. Moreover, the method resulted in the best models of 2 refinement targets and performed remarkably well on oligomeric targets.
Journal of Carbohydrate Chemistry | 2017
Rafał Ślusarz; Justyna Samaszko-Fiertek; Barbara Dmochowska; Janusz Madaj
ABSTRACT Computational investigations were performed to examine the effects of the addition of 2-acetamido-2-deoxy-β-D-galactopyranosylamine or 1-amino-1-deoxy-D-glucitol connected to the C-terminus of vancomycin with different linkers. The purpose of this modification was to find more effective vancomycin derivatives by providing alternative interactions between vancomycin moiety and the peptidoglycan precursor. Each prepared vancomycin–peptidoglycan complex was optimized and submitted to the molecular dynamics study and analysis. The analysis of overall root mean square deviation, changes in position and interactions involving modified part of vancomycin as well as cluster analysis were carried out. One of the proposed vancomycin analogues seems to be efficient vancomycin substitute. GRAPHICAL ABSTRACT
Journal of Carbohydrate Chemistry | 2016
Monika Szulc; Justyna Samaszko-Fiertek; Rafał Ślusarz; Kornelia Kowalska; Artur Sikorski; Janusz Madaj
ABSTRACT Solid phase peptide synthesis (SPPS) of two selected muramyl pentapeptide derivatives is described. The simplicity of removing the protecting groups via one-step deprotection and cleavage from the resin is the biggest advantage of SPPS. Using this method, two muramyl pentapeptide derivatives, D-MurN3-L-Ala-D-iGlu-L-Lys-D-Ala-D-Ser (5) and D-MurN3-L-Ala-D-iGlu-L-Lys-D-Ala-D-Ala (6), were obtained. Their chemical structures were confirmed by high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR) spectroscopy. To determine the absolute configuration of the carbon atom in the side chain of the muramic acid derivative, single-crystal X-ray diffraction measurements were recorded. GRAPHICAL ABSTRACT