Rafal Szmigielski
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rafal Szmigielski.
Chemical Reviews | 2015
Barbara Nozière; Markus Kaberer; M. Claeys; J. D. Allan; Barbara D'Anna; Stefano Decesari; E. Finessi; Marianne Glasius; Irena Grgić; Jacqueline F. Hamilton; Thorsten Hoffmann; Yoshiteru Iinuma; Mohammed Jaoui; Ariane Kahno; Christopher J. Kampf; Ivan Kourtchev; Willy Maenhaut; Nicholas Marsden; Sanna Saarikoski; Jürgen Schnelle-Kreis; Jason D. Surratt; Sönke Szidat; Rafal Szmigielski; Armin Wisthaler
Atmosphere: State of the Art and Challenges Barbara Nozier̀e,*,† Markus Kalberer,*,‡ Magda Claeys,* James Allan, Barbara D’Anna,† Stefano Decesari, Emanuela Finessi, Marianne Glasius, Irena Grgic,́ Jacqueline F. Hamilton, Thorsten Hoffmann, Yoshiteru Iinuma, Mohammed Jaoui, Ariane Kahnt, Christopher J. Kampf, Ivan Kourtchev,‡ Willy Maenhaut, Nicholas Marsden, Sanna Saarikoski, Jürgen Schnelle-Kreis, Jason D. Surratt, Sönke Szidat, Rafal Szmigielski, and Armin Wisthaler †Ircelyon/CNRS and Universite ́ Lyon 1, 69626 Villeurbanne Cedex, France ‡University of Cambridge, Cambridge CB2 1EW, United Kingdom University of Antwerp, 2000 Antwerp, Belgium The University of Manchester & National Centre for Atmospheric Science, Manchester M13 9PL, United Kingdom Istituto ISAC C.N.R., I-40129 Bologna, Italy University of York, York YO10 5DD, United Kingdom University of Aarhus, 8000 Aarhus C, Denmark National Institute of Chemistry, 1000 Ljubljana, Slovenia Johannes Gutenberg-Universitaẗ, 55122 Mainz, Germany Leibniz-Institut für Troposphar̈enforschung, 04318 Leipzig, Germany Alion Science & Technology, McLean, Virginia 22102, United States Max Planck Institute for Chemistry, 55128 Mainz, Germany Ghent University, 9000 Gent, Belgium Finnish Meteorological Institute, FI-00101 Helsinki, Finland Helmholtz Zentrum München, D-85764 Neuherberg, Germany University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States University of Bern, 3012 Bern, Switzerland Institute of Physical Chemistry PAS, Warsaw 01-224, Poland University of Oslo, 0316 Oslo, Norway
Journal of Mass Spectrometry | 2011
Farhat Yasmeen; Rafal Szmigielski; Reinhilde Vermeylen; Yadian Gómez-González; Jason D. Surratt; Arthur W. H. Chan; John H. Seinfeld; Willy Maenhaut; M. Claeys
In this study, we present liquid chromatographic and mass spectral data for predominant terpenoic acids formed through oxidation of α-pinene, β-pinene, d-limonene, and Δ(3)-carene that occur in fine forest aerosol from K-puszta, Hungary, a rural site with coniferous vegetation. Characterization of these secondary organic aerosol tracers in fine ambient aerosol is important because it allows one to gain information on monoterpene precursors and source processes such as oxidation and aging processes. The mass spectral data were obtained using electrospray ionization in the negative ion mode, accurate mass measurements, and linear ion trap tandem mass spectrometric experiments. Emphasis is given to the mass spectrometric differentiation of isobaric terpenoic acids, such as, e.g. the molecular weight (MW) 186 terpenoic acids, cis-pinic, cis-caric, homoterpenylic, ketolimononic, and limonic acids. Other targeted isobaric terpenoic acids are the MW 184 terpenoic acids, cis-pinonic and cis-caronic acids, and the MW 204 tricarboxylic acids, 3-methyl-1,2,3-butanetricarboxylic and 3-carboxyheptanedioic acids. Fragmentation pathways are proposed to provide a rational explanation for the observed isomeric differences and/or to support the suggested tentative structures. For the completeness of the data set, data obtained for recently reported lactone-containing terpenoic acids (i.e. terpenylic and terebic acids), related or isobaric compounds (i.e. norpinic acid, diaterpenylic acid acetate, and unknown MW 188 compounds) are also included, the rationale being that other groups working on this topic could use this data compilation as a reference.
NATO Advanced research workshop on Disposal of Dangerous Chemicals in Urban Areas and Mega Cities | 2013
M. Claeys; Rafal Szmigielski; Reinhilde Vermeylen; Wu Wang; Mohammad Safi Shalamzari; Willy Maenhaut
In this review, we first address the terpenoid composition of ambient fine rural aerosol to give a report on the current state of knowledge in regard to the molecular characterisation of biogenic secondary organic aerosol tracers. The major known, recently elucidated, and still unknown tracers, which can be detected at a significant relative abundance, are listed and briefly discussed. In a second part, we provide a historic account on the discovery of 3-methyl-1,2,3-butanetricarboxylic acid, which involved a long search with several failures and a final success, and propose a revised formation pathway. Finally, we present some brief conclusions and perspectives.
Environmental Science and Pollution Research | 2012
Rafal Szmigielski; Marek Cieslak; Krzysztof J. Rudzinski; Barbara Maciejewska
IntroductionA myriad of volatile organic compounds (VOCs) released by terrestrial vegetation plays an important role in environmental sciences. A thorough chemical identification of these species at the molecular level is essential in various fields, ranging from atmospheric chemistry to ecology of forest ecosystems. In particular, the recognition of VOCs profiles in a context of plant–insect communication is a key issue for the development of forest protection tools.PurposeThis work was aimed at the development of a simple, robust and reliable method for the identification of volatiles emitted from plant materials, which can attract or deter pest insects. Specifically, volatiles emitted from the bark of Pinus sylvestris were studied, which might attract the black pine sawyer beetle Monochamus galloprovincialis—a serious pest of the tree and a vector of a parasitic nematode Bursaphelenchus xylophius.MethodThe volatiles from bark samples were collected using a solid-phase micro-extraction technique, and subsequently analysed by gas-chromatography/mass-spectrometry (GC/MS). The characterisation of the volatile fraction was based on the comparison with data in mass spectral libraries, and in most cases, with the available authentic standards. The identified compounds were screened against the available entomological data to select insect attractors.ResultsThe identified components included terpenes (α-pinene, ∆-3-carene, and para-cymenene), oxygenated terpenes (α-terpineol and verbenone), sesquiterpenes (α-longipinene, longifolene, E-β-farnesene, γ-cadinene and pentadecane), and diterpenes (manoyl oxide and (+)-pimaral). Of these, longifolene and (+)-pimaral are of particular interest as plausible attractors for the M. galloprovincialis beetle that might find application in the construction of insect bait traps.
Archive | 2013
Rafal Szmigielski
The paper overviews the current state of knowledge regarding the origin, formation mechanisms, properties and atmospheric implications of organic sulfates (organosulfates, OS) and organic nitrates (organonitrates, ON). Based on field measurements and smog chamber experiments, these esters have been proved to be relevant components of ambient atmospheric aerosols. Despite the fact that chemical knowledge on esters of sulfuric and nitric acids with simple alcohols has been well documented since the advent of classical organic chemistry (a second part of the nineteenth century), it has been only a recent decade since the discovery of these species in the airborne particulate matter attracted attention of the atmospheric community owing to their enhanced polarity and hydrophilic properties. The advances in the field of analytical instrumentations, chiefly in mass spectrometry, made it possible to provide a detailed characterization of organo-sulfates/nitrates at the molecular level. The composition of aerosol samples collected from various field campaigns showed clearly that organo-sulfates/nitrates may serve as excellent molecular tracers for anthropogenically affected aerosol sources, as it is the case of urban atmosphere.
Synthetic Communications | 2001
Witold Danikiewicz; Rafal Szmigielski
Facile, two-step synthesis of N-alkoxymethyl derivatives of anilides consisting of the methoxymethylation of the appropriate anilides with chlomethyl methyl ether followed by heating with an alcohol in the presence of an acid is described.
Analytical Chemistry | 2018
Grzegorz Spólnik; Paulina Wach; Krzysztof J. Rudzinski; Krzysztof Skotak; Witold Danikiewicz; Rafal Szmigielski
Secondary organic aerosol (SOA) is an important yet not fully characterized constituent of atmospheric particulate matter. A number of different techniques and chromatographic methods are currently used for the analysis of SOA, so the comparison of results from different laboratories poses a challenge. So far, tentative structures have been suggested for many organosulfur compounds that have been identified as markers for the formation of SOA, including isoprene-derived organosulfates. Despite the effectiveness and robustness of LC-MS/MS analyses, the structural profiling of positional isomers of recently discovered organosulfates with molecular weights (MWs) of 214 and 212 from isoprene was entirely unsuccessful. Here, we developed a UHPLC combined with high-resolution tandem mass spectrometric method that significantly improves the separation efficiency and detection sensitivity of these compounds in aerosol matrices. We discovered that selection of the proper solvent for SOA extracts was a key factor in improving the separation parameters. Later, we took advantage of the enhanced sensitivity, combined with a short scan time window, to perform detailed structural mass-spectrometric studies. For the first time, we elucidate a number of isomers of the MW 214 and the MW 212 organosulfates and provide strong evidence for their molecular structures. The structure of trihydroxyketone sulfate MW 214 that we propose has not been previously reported. The methods we designed can be easily applied in other laboratories to foster an easy comparison of related qualitative and quantitative data obtained throughout the world.
Environmental Science & Technology | 2017
Evangelia Kostenidou; Eleni Karnezi; Agata Kolodziejczyk; Rafal Szmigielski; Spyros N. Pandis
The properties and the chemical fate of later generation products of the oxidation of biogenic organic compounds are mostly unknown. The properties of fresh MBTCA aerosol, a later generation product of the oxidation of monoterpenes in the atmosphere, were determined combining an aerosol mass spectrometer (AMS), a thermodenuder, and a scanning mobility particle sizer. Based on its AMS spectrum m/z 141.055 (C7H9O3+) could be used as an MBTCA signature. The MBTCA particle density was 1.43 ± 0.04 g cm-3, its saturation concentration was (1.8 ± 1.3) × 10-3 μg m-3 at 298 K, and its vaporization enthalpy was 150 ± 15 kJ mol-1. After OH radical exposure (∼1.2 days) and UV illumination the average aerosol O:C ratio decreased from 0.72 to 0.58-0.64 suggesting net fragmentation. Our findings suggest that the reactions of MBTCA with OH lead to CO2 loss with or without an oxygen addition.
Chemosphere | 2019
Paulina Wach; Grzegorz Spólnik; Krzysztof J. Rudzinski; Krzysztof Skotak; M. Claeys; Witold Danikiewicz; Rafal Szmigielski
In-cloud processing of volatile organic compounds is one of the significant routes leading to secondary organic aerosol (SOA) in the lower troposphere. In this study, we demonstrate that two atmospherically relevant α,β-unsaturated carbonyls, i.e., but-3-en-2-on (methyl vinyl ketone, MVK) and 2-methylopropenal (methacrolein, MACR), undergo sulfate radical-induced transformations in dilute aqueous systems under photochemical conditions to form organosulfates previously identified in ambient aerosols and SOA generated in smog chambers. The photooxidation was performed under sun irradiation in unbuffered aqueous solutions containing carbonyl precursors at a concentration of 0.2 mmol and peroxydisulfate as a source of sulfate radicals (SO4-) at a concentration of 0.95 mmol. UV-vis analysis of solutions showed the fast decay of unsaturated carbonyl precursors in the presence of sulfate radicals. The observation confirms the capacity of sulfate radicals to transform the organic compounds into SOA components in atmospheric waters. Detailed interpretation of high-resolution negative ion electrospray ionization tandem mass spectra allowed to assign molecular structures to multiple aqueous organosulfate products, including an abundant isoprene-derived organosulfate C4H8SO7 detected at m/z 199. The results highlight the solar aqueous-phase reactions as a potentially significant route for biogenic SOA production in clouds at locations where isoprene oxidation occurs. A recent modelling study suggests that such processes could likely contribute to 20-30 Tg year-1 production of SOA, referred to as aqSOA, which is a non-negligible addition to the still underestimated budget of atmospheric aerosol.
Atmospheric Chemistry and Physics | 2018
Klara Nestorowicz; Mohammed Jaoui; Krzysztof J. Rudzinski; Michael Lewandowski; Tadeusz E. Kleindienst; Witold Danikiewicz; Rafal Szmigielski
K. Nestorowicz, M. Jaoui, K. J. Rudzinski, M. Lewandowski, T. Kleindienst, W. Danikiewicz and R. Szmigielski Environmental Chemistry Group, Institute of Physical Chemistry Polish Academy of Sciences, 01-224 Warsaw, Poland US Environmental Protection Agency, 109 T.W. Alexander Drive, RTP NC, USA, 27711. Mass Spectrometry Group, Institute of Organic Chemistry, Polish Academy of Science, 01-224 Warsaw, Poland