Rafaz Hoque
Yale University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rafaz Hoque.
Gastroenterology | 2011
Rafaz Hoque; Muhammad A. Sohail; Ahsan F. Malik; Sherhayar Sarwar; Yuhuan Luo; Ahsan U. Shah; Franck J. Barrat; Richard A. Flavell; Fred S. Gorelick; Sohail Z. Husain; Wajahat Z. Mehal
BACKGROUND & AIMS Acute pancreatitis is characterized by early activation of intracellular proteases followed by acinar cell death and inflammation. Activation of damage-associated molecular pattern (DAMP) receptors and a cytosolic complex termed the inflammasome initiate forms of inflammation. In this study, we examined whether DAMP-receptors and the inflammasome provide the link between cell death and the initiation of inflammation in pancreatitis. METHODS Acute pancreatitis was induced by caerulein stimulation in wild-type mice and mice deficient in components of the inflammasome (apoptosis-associated speck-like protein containing a caspase recruitment domain [ASC], NLRP3, caspase-1), Toll-like receptor 9 (TLR9), or the purinergic receptor P2X(7). Resident and infiltrating immune cell populations and pro-interleukin-1β expression were characterized in control and caerulein-treated adult murine pancreas. TLR9 expression was quantified in pancreatic cell populations. Additionally, wild-type mice were pretreated with a TLR9 antagonist before induction of acute pancreatitis by caerulein or retrograde bile duct infusion of taurolithocholic acid 3-sulfate. RESULTS Caspase-1, ASC, and NLRP3 were required for inflammation in acute pancreatitis. Genetic deletion of Tlr9 reduced pancreatic edema, inflammation, and pro-IL-1β expression in pancreatitis. TLR9 was expressed in resident immune cells of the pancreas, which are predominantly macrophages. Pretreatment with the TLR9 antagonist IRS954 reduced pancreatic edema, inflammatory infiltrate, and apoptosis. Pretreatment with IRS954 reduced pancreatic necrosis and lung inflammation in taurolithocholic acid 3-sulfate-induced acute pancreatitis. CONCLUSIONS Components of the inflammasome, ASC, caspase-1, and NLRP3, are required for the development of inflammation in acute pancreatitis. TLR9 and P2X(7) are important DAMP receptors upstream of inflammasome activation, and their antagonism could provide a new therapeutic strategy for treating acute pancreatitis.
Journal of Clinical Investigation | 2016
Irma Garcia-Martinez; Nicola Santoro; Yonglin Chen; Rafaz Hoque; Xinshou Ouyang; Sonia Caprio; Mark J. Shlomchik; Robert L. Coffman; Albert Candia; Wajahat Z. Mehal
Nonalcoholic steatohepatitis (NASH) is the most common liver disease in industrialized countries. NASH is a progressive disease that can lead to cirrhosis, cancer, and death, and there are currently no approved therapies. The development of NASH in animal models requires intact TLR9, but how the TLR9 pathway is activated in NASH is not clear. Our objectives in this study were to identify NASH-associated ligands for TLR9, establish the cellular requirement for TLR9, and evaluate the role of obesity-induced changes in TLR9 pathway activation. We demonstrated that plasma from mice and patients with NASH contains high levels of mitochondrial DNA (mtDNA) and intact mitochondria and has the ability to activate TLR9. Most of the plasma mtDNA was contained in microparticles (MPs) of hepatocyte origin, and removal of these MPs from plasma resulted in a substantial decrease in TLR9 activation capacity. In mice, NASH development in response to a high-fat diet required TLR9 on lysozyme-expressing cells, and a clinically applicable TLR9 antagonist blocked the development of NASH when given prophylactically and therapeutically. These data demonstrate that activation of the TLR9 pathway provides a link between the key metabolic and inflammatory phenotypes in NASH.
Pancreas | 2012
Rafaz Hoque; Ahsan F. Malik; Fred S. Gorelick; Wajahat Z. Mehal
The initial injury in acute pancreatitis is characteristically sterile and results in acinar cells necrosis. Intracellular contents released from damaged cells into the extracellular space serve as damage-associated molecular patterns (DAMPs) that trigger inflammation. There is increasing evidence that this sterile inflammatory response mediated through DAMPs released from necrotic acinar cells is a key determinant of further pancreatic injury, remote organ injury, and disease resolution in experimental models. A number of DAMPS, including high-mobility group box protein 1, DNA, adenosine triphosphate and heat shock protein 70, have been shown to have a role in experimental pancreatitis. Many of these DAMPs are also detectable in the human pancreatitis. Genetic deletion and pharmacologic antagonism demonstrate that specific DAMP receptors, including Toll-like receptor (TLR) 4, TLR9, and P2X7, are also required for inflammation in experimental acute pancreatitis. Downstream DAMP-sensing components include nod-like receptor protein 3, caspase 1, interleukin-1β (IL-1), IL-18, and IL-1 receptor, and also are required for full experimental pancreatitis. These DAMP-mediated pathways provide novel therapeutic targets using antagonists of TLRs and other receptors.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2012
Rafaz Hoque; Muhammed Adnan Sohail; Steven Salhanick; Ahsan F. Malik; Ayaz Ghani; Simon C. Robson; Wajahat Z. Mehal
Inflammation contributes to liver injury in acetaminophen (APAP) hepatotoxicity in mice and is triggered by stimulation of immune cells. The purinergic receptor P2X7 is upstream of the nod-like receptor family, pryin domain containing-3 (NLRP3) inflammasome in immune cells and is activated by ATP and NAD that serve as damage-associated molecular patterns. APAP hepatotoxicity was assessed in mice genetically deficient in P2X7, the key inflammatory receptor for nucleotides (P2X7-/-), and in wild-type mice. P2X7-/- mice had significantly decreased APAP-induced liver necrosis. In addition, APAP-poisoned mice were treated with the specific P2X7 antagonist A438079 or etheno-NAD, a competitive antagonist of NAD. Pre- or posttreatment with A438079 significantly decreased APAP-induced necrosis and hemorrhage in APAP liver injury in wild-type but not P2X7-/- mice. Pretreatment with etheno-NAD also significantly decreased APAP-induced necrosis and hemorrhage in APAP liver injury. In addition, APAP toxicity in mice lacking the plasma membrane ecto-NTPDase CD39 (CD39-/-) that metabolizes ATP was examined in parallel with the use of soluble apyrase to deplete extracellular ATP in wild-type mice. CD39-/- mice had increased APAP-induced hemorrhage and mortality, whereas apyrase also decreased APAP-induced mortality. Kupffer cells were treated with extracellular ATP to assess P2X7-dependent inflammasome activation. P2X7 was required for ATP-stimulated IL-1β release. In conclusion, P2X7 and exposure to the ligands ATP and NAD are required for manifestations of APAP-induced hepatotoxicity.
Gastroenterology | 2011
Romina Fiorotto; R. Scirpo; Michael Trauner; Luca Fabris; Rafaz Hoque; Carlo Spirli; Mario Strazzabosco
BACKGROUND & AIMS Loss of function of the cystic fibrosis transmembrane conductance regulator (CFTR) in the biliary epithelium reduces bile flow and alkalinization in patients with cystic fibrosis (CF). Liver damage is believed to result from ductal cholestasis, but only 30% of patients with CF develop liver defects, indicating that another factor is involved. We studied the effects of CFTR deficiency on Toll-like receptor 4 (TLR4)-mediated responses of the biliary epithelium to endotoxins. METHODS Dextran sodium sulfate (DSS) was used to induce colitis in C57BL/6J-Cftrtm1Unc (Cftr-KO) mice and their wild-type littermates. Ductular reaction and portal inflammation were quantified by keratin-19 and CD45 immunolabeling. Cholangiocytes isolated from wild-type and Cftr-KO mice were challenged with lipopolysaccharide (LPS); cytokine secretion was quantified. Activation of nuclear factor κB (NF-κB), phosphorylation of TLR4, and activity of Src were determined. HEK-293 that expressed the secreted alkaline phosphatase reporter and human TLR4 were transfected with CFTR complementary DNAs. RESULTS DSS-induced colitis caused biliary damage and portal inflammation only in Cftr-KO mice. Biliary damage and inflammation were not attenuated by restoring biliary secretion with 24-nor-ursodeoxycholic acid but were significantly reduced by oral neomycin and polymyxin B, indicating a pathogenetic role of gut-derived bacterial products. Cftr-KO cholangiocytes incubated with LPS secreted significantly higher levels of cytokines regulated by TLR4 and NF-κB. LPS-mediated activation of NF-κB was blocked by the TLR4 inhibitor TAK-242. TLR4 phosphorylation by Src was significantly increased in Cftr-KO cholangiocytes. Expression of wild-type CFTR in the HEK293 cells stimulated with LPS reduced activation of NF-κB. CONCLUSIONS CFTR deficiency alters the innate immunity of the biliary epithelium and reduces its tolerance to endotoxin, resulting in an Src-dependent inflammatory response mediated by TLR4 and NF-κB. These findings might be used to develop therapies for CF-associated cholangiopathy.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Ahsan F. Malik; Rafaz Hoque; Xinshou Ouyang; Ayaz Ghani; Enping Hong; Khadija Khan; Laura Beth Moore; Gilbert Ng; Fay Munro; Richard A. Flavell; Yan Shi; Themis R. Kyriakides; Wajahat Z. Mehal
Implantation of biomaterials and devices into soft tissues leads to the development of the foreign body response (FBR), which can interfere with implant function and eventually lead to failure. The FBR consists of overlapping acute and persistent inflammatory phases coupled with collagenous encapsulation and currently there are no therapeutic options. Initiation of the FBR involves macrophage activation, proceeding to giant cell formation, fibroblast activation, and collagen matrix deposition. Despite the recognition of this sequence of events, the molecular pathways required for the FBR have not been elucidated. We have identified that the acute inflammatory response to biomaterials requires nucleotide-binding domain and leucine-rich repeat-containing 3 (Nlrp3), apoptosis-associated speck-like protein containing CARD (Asc), and caspase-1, as well as plasma membrane cholesterol, and Syk signaling. Full development of the FBR is dependent on Asc and caspase-1, but not Nlrp3. The common antiinflammatory drug aspirin can reduce inflammasome activation and significantly reduce the FBR. Taken together, these findings expand the role of the inflammasome from one of sensing damage associated molecular patterns (DAMPs) to sensing all particulate matter irrespective of size. In addition, implication of the inflammasome in biomaterial recognition identifies key pathways, which can be targeted to limit the FBR.
Journal of Immunology | 2013
Rafaz Hoque; Ahmad Farooq; Ahsan F. Malik; Bobby N. Trawick; David W. Berberich; Joseph P. McClurg; Karen P. Galen; Wajahat Z. Mehal
TLR9 is a key determinant of the innate immune responses in both infectious and sterile injury. Specific antagonism of TLR9 is of great clinical interest to reduce tissue damage in a wide range of pathologies, and has been approached by modification of nucleic acids, the recognized ligand for TLR9. Such oligonucleotide-derived pharmacotherapeutics have limitations in specificity for nucleic acid receptors, significant potential for immunologic recognition with generation of innate and adaptive immune responses, and limited bioavailability. We have identified enantiomeric analogues of traditional (−)-morphinans as having TLR9 antagonist properties on reporter cell lines. One of these analogues (COV08-0064) is demonstrated to be a novel small-molecule antagonist of TLR9 with greater specificity for TLR9 than oligo-based antagonists. COV08-0064 has wide bioavailability, including the s.c. and oral routes. It specifically inhibits the action of TLR9 antagonists on reporter cells lines and the production of cytokines by TLR9 agonists from primary cells. It also has efficacy in limiting TLR9-mediated sterile inflammation in in vivo models of acute liver injury and acute pancreatitis. The identification of a morphinan-based novel small-molecule structure with TLR9 antagonism is a significant step in expanding therapeutic strategies in the field of sterile inflammatory injury.
Journal of Gastroenterology and Hepatology | 2013
Rafaz Hoque; Ahmad Farooq; Wajahat Z. Mehal
The ability of tissue injury to result in inflammation is a well-recognized phenomenon and is central to a number of common liver and pancreatic diseases including alcoholic steatohepatitis and pancreatitis, as well as drug-induced liver injury, non-alcoholic steatohepatitis, and pancreatitis from other causes. The requirements of extracellular damage-associated molecules and a cytosolic machinery labeled the inflammasome have been established in in vitro culture systems and in vivo disease models. This has provided a generic insight into the pathways involved, and the challenge now is to understand the specifics of these mechanisms in relation to the particular insults and organs involved. One reason for the excitement in this field is that a number of therapeutic candidates such a toll-like receptor antagonists and interleukin-1R antagonists are either approved or in clinical trials for other indications.
Journal of Hepatology | 2013
Rafaz Hoque; Yoram Vodovotz; Wajahat Z. Mehal
Tissue stress and cell death result in inflammation even in the absence of pathogens. Such sterile inflammation is dependent on a cytosolic complex of proteins inside immune cells termed the inflammasome. This complex converts two groups of extracellular signals into an inflammatory response via activation of caspase-1 and secretion of IL-1β and IL-18. Group 1 signals are typically TOLL like receptor agonists and result in transcriptional upregulation of inflammasome components and pro-cytokines. Group 2 signals are diverse, ranging from uric acid to ATP, and lead to assembly and activation of the inflammasome complex. Inflammasome components are required for a wide range of acute and chronic pathologies, including experimental alcoholic and non-alcoholic steatohepatitis, and drug-induced liver injury. Collectively, group 1 and 2 signals, inflammasome components, and cytokine receptors provide a rich source of therapeutic targets. Many of the advances in the field have come from standard reductionist experiments. Progress in the understanding of complex human systems will, however, be dependent on novel strategies such as systems analysis, which analyze large data sets to provide new insights.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2014
Ahmad Farooq; Rafaz Hoque; Xinshou Ouyang; Ahsan Farooq; Ayaz Ghani; Kaimul Ahsan; Mateus T. Guerra; Wajahat Z. Mehal
Activation of the cytosolic inflammasome machinery is responsible for acute and chronic liver inflammation, but little is known about its regulation. The N-methyl-d-aspartate (NMDA) receptor families are heterotetrameric ligand-gated ion channels that are activated by a range of metabolites, including aspartate, glutamate, and polyunsaturated fatty acids. In the brain NMDA receptors are present on neuronal and nonneuronal cells and regulate a diverse range of functions. We tested the role of the NMDA receptor and aspartate in inflammasome regulation in vitro and in models of acute hepatitis and pancreatitis. We demonstrate that the NMDA receptor is present on Kupffer cells, and their activation on primary mouse and human cells limits inflammasome activation by downregulating NOD-like receptor family, pyrin domain containing 3 and procaspase-1. The NMDA receptor pathway is active in vivo, limits injury in acute hepatitis, and can be therapeutically further activated by aspartate providing protection in acute inflammatory liver injury. Downregulation of inflammasome activation by NMDA occurs via a β-arrestin-2 NF-kβ and JNK pathway and not via Ca(2+) mobilization. We have identified the NMDA receptor as a regulator of inflammasome activity in vitro and in vivo. This has identified a new area of immune regulation associated by metabolites that may be relevant in a diverse range of conditions, including nonalcoholic steatohepatitis and total parenteral nutrition-induced immune suppression.