Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raffaele Calogero is active.

Publication


Featured researches published by Raffaele Calogero.


Journal of Cellular and Molecular Medicine | 2009

Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats

Mb Herrera; Valentina Fonsato; Stefano Gatti; Maria Chiara Deregibus; Andrea Sordi; Daniela Cantarella; Raffaele Calogero; Benedetta Bussolati; Ciro Tetta; Giovanni Camussi

Several studies indicate that adult stem cells may improve the recovery from acute tissue injury. It has been suggested that they may contribute to tissue regeneration by the release of paracrine factors promoting proliferation of tissue resident cells. However, the factors involved remain unknown. In the present study we found that microvesicles (MVs) derived from human liver stem cells (HLSC) induced in vitro proliferation and apoptosis resistance of human and rat hepatocytes. These effects required internalization of MVs in the hepatocytes by an α4‐integrin‐dependent mechanism. However, MVs pre‐treated with RNase, even if internalized, were unable to induce hepatocyte proliferation and apoptosis resistance, suggesting an RNA‐dependent effect. Microarray analysis and quantitative RT‐PCR demonstrated that MVs were shuttling a specific subset of cellular mRNA, such as mRNA associated in the control of transcription, translation, proliferation and apoptosis. When administered in vivo, MVs accelerated the morphological and functional recovery of liver in a model of 70% hepatectomy in rats. This effect was associated with increase in hepatocyte proliferation and was abolished by RNase pre‐treatment of MVs. Using human AGO2, as a reporter gene present in MVs, we found the expression of human AGO2 mRNA and protein in the liver of hepatectomized rats treated with MVs. These data suggested a translation of the MV shuttled mRNA into hepatocytes of treated rats. In conclusion, these results suggest that MVs derived from HLSC may activate a proliferative program in remnant hepatocytes after hepatectomy by a horizontal transfer of specific mRNA subsets.


BMC Cancer | 2006

Selection of suitable reference genes for accurate normalization of gene expression profile studies in non-small cell lung cancer

Silvia Saviozzi; Francesca Cordero; Marco Lo Iacono; Silvia Novello; Scagliotti V. Giorgio; Raffaele Calogero

BackgroundIn real-time RT quantitative PCR (qPCR) the accuracy of normalized data is highly dependent on the reliability of the reference genes (RGs). Failure to use an appropriate control gene for normalization of qPCR data may result in biased gene expression profiles, as well as low precision, so that only gross changes in expression level are declared statistically significant or patterns of expression are erroneously characterized. Therefore, it is essential to determine whether potential RGs are appropriate for specific experimental purposes. Aim of this study was to identify and validate RGs for use in the differentiation of normal and tumor lung expression profiles.MethodsA meta-analysis of lung cancer transcription profiles generated with the GeneChip technology was used to identify five putative RGs. Their consistency and that of seven commonly used RGs was tested by using Taqman probes on 18 paired normal-tumor lung snap-frozen specimens obtained from non-small-cell lung cancer (NSCLC) patients during primary curative resection.ResultsThe 12 RGs displayed showed a wide range of Ct values: except for rRNA18S (mean 9.8), the mean values of all the commercial RGs and ESD ranged from 19 to 26, whereas those of the microarray-selected RGs (BTF-3, YAP1, HIST1H2BC, RPL30) exceeded 26. RG expression stability within sample populations and under the experimental conditions (tumour versus normal lung specimens) was evaluated by: (1) descriptive statistic; (2) equivalence test; (3) GeNorm applet. All these approaches indicated that the most stable RGs were POLR2A, rRNA18S, YAP1 and ESD.ConclusionThese data suggest that POLR2A, rRNA18S, YAP1 and ESD are the most suitable RGs for gene expression profile studies in NSCLC. Furthermore, they highlight the limitations of commercial RGs and indicate that meta-data analysis of genome-wide transcription profiling studies may identify new RGs.In real-time RT quantitative PCR (qPCR) the accuracy of normalized data is highly dependent on the reliability of the reference genes (RGs). Failure to use an appropriate control gene for normalization of qPCR data may result in biased gene expression profiles, as well as low precision, so that only gross changes in expression level are declared statistically significant or patterns of expression are erroneously characterized. Therefore, it is essential to determine whether potential RGs are appropriate for specific experimental purposes. Aim of this study was to identify and validate RGs for use in the differentiation of normal and tumor lung expression profiles. A meta-analysis of lung cancer transcription profiles generated with the GeneChip technology was used to identify five putative RGs. Their consistency and that of seven commonly used RGs was tested by using Taqman probes on 18 paired normal-tumor lung snap-frozen specimens obtained from non-small-cell lung cancer (NSCLC) patients during primary curative resection. The 12 RGs displayed showed a wide range of Ct values: except for rRNA18S (mean 9.8), the mean values of all the commercial RGs and ESD ranged from 19 to 26, whereas those of the microarray-selected RGs (BTF-3, YAP1, HIST1H2BC, RPL30) exceeded 26. RG expression stability within sample populations and under the experimental conditions (tumour versus normal lung specimens) was evaluated by: (1) descriptive statistic; (2) equivalence test; (3) GeNorm applet. All these approaches indicated that the most stable RGs were POLR2A, rRNA18S, YAP1 and ESD. These data suggest that POLR2A, rRNA18S, YAP1 and ESD are the most suitable RGs for gene expression profile studies in NSCLC. Furthermore, they highlight the limitations of commercial RGs and indicate that meta-data analysis of genome-wide transcription profiling studies may identify new RGs.


PLOS ONE | 2009

Global Gene Expression Profiling Of Human Pleural Mesotheliomas: Identification of Matrix Metalloproteinase 14 (MMP-14) as Potential Tumour Target

Stefania Crispi; Raffaele Calogero; Mario Santini; Pasquale Mellone; B. Vincenzi; Gennaro Citro; Giovanni Vicidomini; Silvia Fasano; Rosaria Meccariello; Gilda Cobellis; Simona Menegozzo; Riccardo Pierantoni; Francesco Facciolo; Alfonso Baldi; Massimo Menegozzo

Background The goal of our study was to molecularly dissect mesothelioma tumour pathways by mean of microarray technologies in order to identify new tumour biomarkers that could be used as early diagnostic markers and possibly as specific molecular therapeutic targets. Methodology We performed Affymetrix HGU133A plus 2.0 microarray analysis, containing probes for about 39,000 human transcripts, comparing 9 human pleural mesotheliomas with 4 normal pleural specimens. Stringent statistical feature selection detected a set of differentially expressed genes that have been further evaluated to identify potential biomarkers to be used in early diagnostics. Selected genes were confirmed by RT-PCR. As reported by other mesothelioma profiling studies, most of genes are involved in G2/M transition. Our list contains several genes previously described as prognostic classifier. Furthermore, we found novel genes, never associated before to mesotheliom that could be involved in tumour progression. Notable is the identification of MMP-14, a member of matrix metalloproteinase family. In a cohort of 70 mesothelioma patients, we found by a multivariate Cox regression analysis, that the only parameter influencing overall survival was expression of MMP14. The calculated relative risk of death in MM patients with low MMP14 expression was significantly lower than patients with high MMp14 expression (P = 0.002). Conclusions Based on the results provided, this molecule could be viewed as a new and effective therapeutic target to test for the cure of mesothelioma.


PLOS Genetics | 2014

Histone Methyltransferase MMSET/NSD2 Alters EZH2 Binding and Reprograms the Myeloma Epigenome through Global and Focal Changes in H3K36 and H3K27 Methylation

Relja Popovic; Eva Martinez-Garcia; Eugenia G. Giannopoulou; Quanwei Zhang; Qingyang Zhang; Teresa Ezponda; Mrinal Y. Shah; Christine Will; Eliza C. Small; Youjia Hua; Marinka Bulic; Yanwen Jiang; Matteo Carrara; Raffaele Calogero; William L. Kath; Neil L. Kelleher; Ji Ping Wang; Olivier Elemento; Jonathan D. Licht

Overexpression of the histone methyltransferase MMSET in t(4;14)+ multiple myeloma patients is believed to be the driving factor in the pathogenesis of this subtype of myeloma. MMSET catalyzes dimethylation of lysine 36 on histone H3 (H3K36me2), and its overexpression causes a global increase in H3K36me2, redistributing this mark in a broad, elevated level across the genome. Here, we demonstrate that an increased level of MMSET also induces a global reduction of lysine 27 trimethylation on histone H3 (H3K27me3). Despite the net decrease in H3K27 methylation, specific genomic loci exhibit enhanced recruitment of the EZH2 histone methyltransferase and become hypermethylated on this residue. These effects likely contribute to the myeloma phenotype since MMSET-overexpressing cells displayed increased sensitivity to EZH2 inhibition. Furthermore, we demonstrate that such MMSET-mediated epigenetic changes require a number of functional domains within the protein, including PHD domains that mediate MMSET recruitment to chromatin. In vivo, targeting of MMSET by an inducible shRNA reversed histone methylation changes and led to regression of established tumors in athymic mice. Together, our work elucidates previously unrecognized interplay between MMSET and EZH2 in myeloma oncogenesis and identifies domains to be considered when designing inhibitors of MMSET function.


BMC Bioinformatics | 2007

Cross platform microarray analysis for robust identification of differentially expressed genes

Roberta Bosotti; Giuseppe Locatelli; Sandra Healy; Emanuela Scacheri; Luca Sartori; Ciro Mercurio; Raffaele Calogero; Antonella Isacchi

BackgroundMicroarrays have been widely used for the analysis of gene expression and several commercial platforms are available. The combined use of multiple platforms can overcome the inherent biases of each approach, and may represent an alternative that is complementary to RT-PCR for identification of the more robust changes in gene expression profiles.In this paper, we combined statistical and functional analysis for the cross platform validation of two oligonucleotide-based technologies, Affymetrix (AFFX) and Applied Biosystems (ABI), and for the identification of differentially expressed genes.ResultsIn this study, we analysed differentially expressed genes after treatment of an ovarian carcinoma cell line with a cell cycle inhibitor. Treated versus control RNA was analysed for expression of 16425 genes represented on both platforms.We assessed reproducibility between replicates for each platform using CAT plots, and we found it high for both, with better scores for AFFX. We then applied integrative correlation analysis to assess reproducibility of gene expression patterns across studies, bypassing the need for normalizing expression measurements across platforms. We identified 930 genes as differentially expressed on AFFX and 908 on ABI, with ~80% common to both platforms. Despite the different absolute values, the range of intensities of the differentially expressed genes detected by each platform was similar. ABI showed a slightly higher dynamic range in FC values, which might be associated with its detection system. 62/66 genes identified as differentially expressed by Microarray were confirmed by RT-PCR.ConclusionIn this study we present a cross-platform validation of two oligonucleotide-based technologies, AFFX and ABI. We found good reproducibility between replicates, and showed that both platforms can be used to select differentially expressed genes with substantial agreement. Pathway analysis of the affected functions identified themes well in agreement with those expected for a cell cycle inhibitor, suggesting that this procedure is appropriate to facilitate the identification of biologically relevant signatures associated with compound treatment. The high rate of confirmation found for both common and platform-specific genes suggests that the combination of platforms may overcome biases related to probe design and technical features, thereby accelerating the identification of trustworthy differentially expressed genes.


The FASEB Journal | 2013

The noninflammatory role of high mobility group box 1/toll-like receptor 2 axis in the self-renewal of mammary cancer stem cells

Laura Conti; Stefania Lanzardo; Maddalena Arigoni; Roberta Antonazzo; Enrico Radaelli; Daniela Cantarella; Raffaele Calogero; Federica Cavallo

Cancer stem cells (CSCs) are responsible for tumor progression, metastases, resistance to therapy, and tumor recurrence. Therefore, the identification of molecules involved in CSC self‐renewal is a necessary step toward more effective therapies. To this aim, through the transcription profiling of the murine ErbB2+ tumor cell line TUBO vs. derived CSC‐enriched mammospheres, Toll‐like receptor 2 (TLR2) was identified as 2‐fold overexpressed in CSCs, as confirmed by qPCR and cytofluorimetric analysis. TLR2 signaling inhibition impaired in vitro mammosphere generation in murine TUBO (60%) and 4T1 (30%) and human MDA‐MB‐231 (50%), HCC1806 (60%), and MCF7 (50%) cells. In CSC, TLR2 was activated by endogenous high‐mobility‐group box 1 (HMGB1), inducing IκBα phosphorylation, IL‐6 and TGFβ secretion, and, consequently, STAT3 and Smad3 activation. In vivo TLR2 inhibition blocked TUBO tumor takes in 9/14 mice and induced a 2‐fold reduction in lung metastases development by decreasing cell proliferation and vascularization and increasing apoptosis. Collectively, these results demonstrate that murine and human mammary CSCs express TLR2 and its ligand HMGB1; this autocrine loop plays a pivotal role in CSC self‐renewal, tumorigenesis, and metastatic ability. These findings, while providing evidence against the controversial use of TLR2 agonists in antitumor therapy, lay out new paths toward the design of anticancer treatments.—Conti, L., Lanzardo, S., Arigoni, M., Antonazzo, R., Radaelli, E., Cantarella, D., Calogero, R. A., Cavallo, F., The noninflammatory role of high mobility group box 1/toll‐like receptor 2 axis in the self‐renewal of mammary cancer stem cells. FASEB J. 27, 4731–4744 (2013). www.fasebj.org


Developmental Biology | 2009

Arx acts as a regional key selector gene in the ventral telencephalon mainly through its transcriptional repression activity

Gaia Colasante; Alessandro Sessa; Stefania Crispi; Raffaele Calogero; Ahmed Mansouri; Patrick Collombat; Vania Broccoli

The homeobox-containing gene Arx is expressed during ventral telencephalon development and required for correct GABAergic interneuron tangential migration from the ganglionic eminences to the olfactory bulbs, cerebral cortex and striatum. Its human ortholog is associated with a variety of neurological clinical manifestations whose symptoms are compatible with the loss of cortical interneurons and altered basal ganglia-related activities. Herein, we report the identification of a number of genes whose expression is consistently altered in Arx mutant ganglionic eminences. Our analyses revealed a striking ectopic expression in the ganglionic eminences of several of these genes normally at most marginally expressed in the ventral telencephalon. Among them, Ebf3 was functionally analyzed. Thus, its ectopic expression in ventral telencephalon was found to prevent neuronal tangential migration. Further, we showed that Arx is sufficient to repress Ebf3 endogenous expression and that its silencing in Arx mutant tissues partially rescues tangential cell movement. Together, these data provide new insights into the molecular pathways regulated by Arx during telencephalon development.


Nature Reviews Cancer | 2007

Are oncoantigens suitable targets for anti-tumour therapy?

Federica Cavallo; Raffaele Calogero; Guido Forni

When a vaccine-elicited immune response is directed against oncoantigens — proteins required for the neoplastic process — the chance that the tumour will evade the vaccine should be reduced. But how can these causal oncoantigens be identified? One approach is to find tumour-associated and microenvironment-associated oncoantigens required for progression from one tumour stage to the next by comparing gene signatures isolated from the different stages of tumour progression in cancer-prone transgenic mice. Mouse oncoantigens subsequently shown to be involved in human cancer can then be validated in mouse vaccination experiments. This provides the groundwork for the rational design of cancer vaccines for clinical trials.


Mbio | 2015

Dual RNA-seq of Nontypeable Haemophilus influenzae and Host Cell Transcriptomes Reveals Novel Insights into Host-Pathogen Cross Talk

Buket Baddal; Alessandro Muzzi; Stefano Censini; Raffaele Calogero; Giulia Torricelli; Silvia Guidotti; Anna Rita Taddei; Antonello Covacci; Mariagrazia Pizza; Rino Rappuoli; Marco Soriani; Alfredo Pezzicoli

ABSTRACT The ability to adhere and adapt to the human respiratory tract mucosa plays a pivotal role in the pathogenic lifestyle of nontypeable Haemophilus influenzae (NTHi). However, the temporal events associated with a successful colonization have not been fully characterized. In this study, by reconstituting the ciliated human bronchial epithelium in vitro, we monitored the global transcriptional changes in NTHi and infected mucosal epithelium simultaneously for up to 72 h by dual RNA sequencing. The initial stage of colonization was characterized by the binding of NTHi to ciliated cells. Temporal profiling of host mRNA signatures revealed significant dysregulation of the target cell cytoskeleton elicited by bacterial infection, with a profound effect on the intermediate filament network and junctional complexes. In response to environmental stimuli of the host epithelium, NTHi downregulated its central metabolism and increased the expression of transporters, indicating a change in the metabolic regime due to the availability of host substrates. Concurrently, the oxidative environment generated by infected cells instigated bacterial expression of stress-induced defense mechanisms, including the transport of exogenous glutathione and activation of the toxin-antitoxin system. The results of this analysis were validated by those of confocal microscopy, Western blotting, Bio-plex, and real-time quantitative reverse transcription-PCR (qRT-PCR). Notably, as part of our screening for novel signatures of infection, we identified a global profile of noncoding transcripts that are candidate small RNAs (sRNAs) regulated during human host infection in Haemophilus species. Our data, by providing a robust and comprehensive representation of the cross talk between the host and invading pathogen, provides important insights into NTHi pathogenesis and the development of efficacious preventive strategies. IMPORTANCE Simultaneous monitoring of infection-linked transcriptome alterations in an invading pathogen and its target host cells represents a key strategy for identifying regulatory responses that drive pathogenesis. In this study, we report the progressive events of NTHi colonization in a highly differentiated model of ciliated bronchial epithelium. Genome-wide transcriptome maps of NTHi during infection provided mechanistic insights into bacterial adaptive responses to the host niche, with modulation of the central metabolism as an important signature of the evolving milieu. Our data indicate that infected epithelia respond by substantial alteration of the cytoskeletal network and cytokine repertoire, revealing a dynamic cross talk that is responsible for the onset of inflammation. This work significantly enhances our understanding of the means by which NTHi promotes infection on human mucosae and reveals novel strategies exploited by this important pathogen to cause invasive disease. Simultaneous monitoring of infection-linked transcriptome alterations in an invading pathogen and its target host cells represents a key strategy for identifying regulatory responses that drive pathogenesis. In this study, we report the progressive events of NTHi colonization in a highly differentiated model of ciliated bronchial epithelium. Genome-wide transcriptome maps of NTHi during infection provided mechanistic insights into bacterial adaptive responses to the host niche, with modulation of the central metabolism as an important signature of the evolving milieu. Our data indicate that infected epithelia respond by substantial alteration of the cytoskeletal network and cytokine repertoire, revealing a dynamic cross talk that is responsible for the onset of inflammation. This work significantly enhances our understanding of the means by which NTHi promotes infection on human mucosae and reveals novel strategies exploited by this important pathogen to cause invasive disease.


Clinical Cancer Research | 2006

Piroxicam and cisplatin in a mouse model of peritoneal mesothelioma.

Enrico P. Spugnini; Irene Cardillo; Alessandra Verdina; Stefania Crispi; Silvia Saviozzi; Raffaele Calogero; Angela Nebbioso; Lucia Altucci; Giancarlo Cortese; Rossella Galati; Jeremy Chien; Viji Shridhar; Bruno Vincenzi; Gennaro Citro; Francesco Cognetti; Ada Sacchi; Alfonso Baldi

Purpose: The aim of the present study was to evaluate the effects of piroxicam, a widely used nonsteroidal anti-inflammatory drug, alone and in combination with cisplatin (CDDP), on cell growth of mesothelioma cells. Experimental Design: Cell proliferation, cell cycle analysis, and microarray technology were done on MSTO-211H and NCI-H2452 cells treated with piroxicam. Moreover, the effects of piroxicam and CDDP on tumor growth and survival of mouse xenograft models of mesothelioma were determined. Results: Piroxicam treatment of MSTO-211H and NCI-H2452 cells resulted in a significant inhibition of proliferation. Cell cycle analysis revealed that there was an increase in the rate of apoptosis in MSTO-211H cells and an increase in the cells accumulating in G2-M in NCI-H2452. Moreover, a marked tumor growth inhibition and an extended survival of mice treated with a combination of piroxicam and CDDP in MSTO-211H cell–induced peritoneal mesotheliomas was observed. Last, GeneChip array analysis of MSTO-211H mesothelioma cell line revealed that piroxicam treatment caused up-regulation of metabolic pathway–associated genes and down-regulation of genes related to RNA processing apparatus. Of note, epidermal growth factor receptor, one of the new biological targets of chemotherapy for mesothelioma, was down-regulated and HtrA1, a serine protease recently shown to be an endogenous mediator of CDDP cytotoxicity, was up-regulated following piroxicam treatment both in vitro and in vivo. Conclusion: These data suggest that piroxicam sensitizes mesothelioma cells to CDDP-induced cytotoxicity by modulating the expression of several target genes. Therefore, piroxicam in combination with CDDP might potentially be useful in the treatment of patients with mesothelioma.

Collaboration


Dive into the Raffaele Calogero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giorgio G. Galli

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Šárka Pospíšilová

Central European Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge