Raffaele Geremia
University of Rome Tor Vergata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Raffaele Geremia.
Journal of Cell Science | 2003
Manuela Pellegrini; Paola Grimaldi; Pellegrino Rossi; Raffaele Geremia; Susanna Dolci
It is well established that the c-kit gene plays an essential role in the proliferation of differentiating spermatogonia in prepuberal mice. However, the mechanisms that regulate the onset of spermatogenesis, i.e. differentiation of spermatogonial stem cells and c-kit expression, are poorly understood. Here we identify a novel signal transduction system in mouse prepuberal testis regulating this developmental event, involving bone morphogenetic protein 4 (BMP4) and its transduction machinery. BMP4 is produced by Sertoli cells very early in the postnatal life and is successively down regulated in peri-puberal Sertoli cells. Its receptor Alk3 and the R-Smad Smad5 are specifically expressed both in proliferating primordial germ cells and in postnatal spermatogonia. BMP4 stimulation of cultured spermatogonia induces Smad4/5 nuclear translocation and the formation of a DNA-binding complex with the transcriptional coactivator p300/CBP. In vitro exposure of undifferentiated spermatogonia to BMP4 exerts both mitogenic and differentiative effects, inducing [3H]thymidine incorporation and Kit expression. As a result of the latter event, Kit-negative spermatogonia acquire sensitivity to Stem Cell Factor.
Journal of Cell Science | 2010
Florencia Barrios; Doria Filipponi; Manuela Pellegrini; Sara Di Siena; Raffaele Geremia; Pellegrino Rossi; Massimo De Felici; Emmanuele A. Jannini; Susanna Dolci
In the mouse, three genes that are homologous to the Drosophila Nanos (Nos) gene have been identified. Deletion of one of these genes, Nanos2, results in male sterility, owing to loss of germ cells during fetal life. Before apoptosis, Nanos2-null gonocytes enter meiosis, suggesting that Nanos2 functions as a meiotic repressor. Here, we show that Nanos2 is continuously expressed in male germ cells from fetal gonocytes to postnatal spermatogonial stem cells. We observed that the promeiotic factor AtRA, an analog of retinoic acid (RA), downregulates NANOS2 levels, in both fetal and postnatal gonocytes, while promoting meiosis. Interestingly, FGF9, a growth factor crucial for sex differentiation and survival of fetal gonocytes, upregulates levels of NANOS2 in both male and female primordial germ cells (PGCs) and in premeiotic spermatogonia. This effect was paralleled by an impairment of meiotic entry, suggesting that FGF9 acts as an inhibitor of meiosis through the upregulation of Nanos2. We found that NANOS2 interacts with PUM2, and that these two proteins colocalize in the ribonucleoparticle and polysomal fractions on sucrose gradients, supporting the notion that they bind RNA. Finally, we found that recombinant NANOS2 binds to two spermatogonial mRNAs, Gata2 and Taf7l, which are involved in germ-cell differentiation.
The EMBO Journal | 2002
Claudio Sette; Marco Barchi; Arturo Bevilacqua; Raffaele Geremia; Pellegrino Rossi
Microinjection in mouse eggs of tr‐kit, a truncated form of the c‐kit tyrosine kinase present in mouse spermatozoa, causes resumption of meiosis through activation of phospholipase Cγ1 (PLCγ1) and Ca2+ mobilization from intracellular stores. We show that the Src‐like kinase Fyn phosphorylates Tyr161 in tr‐kit and that this residue is essential for tr‐kit function. Fyn is localized in the cortex region underneath the plasma membrane in mouse oocytes. Using several approaches, we demonstrate that Fyn associates with tr‐kit and that the interaction requires Tyr161. The interaction between tr‐kit and Fyn triggers activation of the kinase as monitored by both autophosphorylation and phosphorylation of PLCγ1. Co‐injection of tr‐kit with the SH2 domain of Fyn, or pre‐treatment with a Fyn inhibitor, impairs oocyte activation, suggesting that activation of Fyn by tr‐kit also occurs in vivo. Finally, microinjection of constitutively active Fyn triggers oocyte activation downstream of tr‐kit but still requires PLC activity. We suggest that the mechanism by which tr‐kit triggers resumption of meiosis of mouse eggs requires a functional interaction with Fyn and phosphorylation of PLCγ1.
Journal of Endocrinological Investigation | 2000
Pellegrino Rossi; Claudio Sette; Susanna Dolci; Raffaele Geremia
The tyrosine-kinase receptor c-kit and its ligand, stem cell factor (SCF), are essential for the maintenance of primordial germ cells (PGCs) in both sexes. However, c-kit and a postmeiotic- specific alternative c-kit gene product play important roles also during post-natal stages of spermatogenesis. In the adult testis, the c-kit receptor is re-expressed in differentiating spermatogonia, but not in spermatogonial stem cells, whereas SCF is expressed by Sertoli cells under FSH stimulation. SCF stimulates DNA synthesis in type A spermatogonia cultured in vitro, and injection of anti-c-kit antibodies blocks their proliferation in vivo. A point mutation in the c-kit gene, which impairs SCF-mediated activation of phosphatydilinositol 3-kinase, does not cause any significant reduction in PGCs number during embryonic development, nor in spermatogonial stem cell populations. However males are completely sterile due to a block in the initial stages of spermatogenesis, associated to abolishment of DNA-synthesis in differentiating A1-A4 spermatogonia. With the onset of meiosis c-kit expression ceases, but a truncated c-kit product, tr-kit, is specifically expressed in post-meiotic stages of spermatogenesis, and is accumulated in mature spermatozoa. Microinjection of tr-kit into mouse eggs causes their parthenogenetic activation, suggesting that it might play a role in the final function of the gametes, fertilization.
Developmental Biology | 1992
Pellegrino Rossi; Giovanna Marziali; Cristina Albanesi; Alexandra Charlesworth; Raffaele Geremia; Vincenzo Sorrentino
We have cloned a novel c-kit mRNA of 3.2 kb expressed in postmeiotic male germ cells. This transcript initiates in the genomic region immediately upstream of the exon coding for the second box of the split c-kit tyrosine kinase domain. The open reading frame (ORF) contains 12 novel amino acids in frame with the C-terminal 190 amino acids of the c-kit protein. It lacks therefore the upstream region in the 5.5-kb c-kit mRNA encoding the extracellular and transmembrane domain, the ATP-binding site and the kinase insert domain present in the c-kit protein.
Carcinogenesis | 2008
Andrea Bianchini; Maria Loiarro; Pamela Bielli; Roberta Busà; Fabrizio Loreni; Raffaele Geremia; Claudio Sette
Deregulation of the phosphatidyl inositol trisphosphate kinase/AKT/mammalian target of rapamycin (mTOR) and RAS/mitogen-activated protein kinase (MAPK)/MNK pathways frequently occurs in human prostate carcinomas (PCas) and leads to aberrant modulation of messenger RNA (mRNA) translation. We have investigated the relative contribution of these pathways to translational regulation and proliferation of PCa cells. MNK-dependent phosphorylation of eIF4E is elevated in DU145 cells, which have low basal levels of AKT/mTOR activity due to the expression of the tumor suppressor PTEN. In contrast, eIF4E phosphorylation is low in PC3 and LNCaP cells with mutated PTEN and constitutively active AKT/mTOR pathway, but it can be strongly induced through inhibition of mTOR activity by rapamycin or serum depletion. Remarkably, we found that inhibition of MNKs strongly reduced the polysomal recruitment of terminal oligopyrimidine messenger RNAs (TOP mRNAs), which are known targets of mTOR-dependent translational control. Pull-down assays of the eIF4F complex indicated that translation initiation was differently affected by inhibition of MNKs and mTOR. In addition, concomitant treatment with MNK inhibitor and rapamycin exerted additive effects on polysomal recruitment of TOP mRNAs and protein synthesis. The MNK inhibitor was more effective than rapamycin in blocking proliferation of PTEN-expressing cells, whereas combination of the two inhibitors suppressed cell cycle progression in both cell lines. Microarray analysis showed that MNK affected translation of mRNAs involved in cell cycle progression. Thus, our results indicate that a balance between the activity of the AKT/mTOR and the MAPK/MNK pathway in PCa cells maintains a defined translational level of specific mRNAs required for ribosome biogenesis, cell proliferation and stress response and might confer to these cells the ability to overcome negative insults.
Journal of Cell Biology | 2009
Valeria Messina; Enrica Bianchi; Marco Barchi; Gillian Vogel; Costanzo Moretti; Fioretta Palombi; Mario Stefanini; Raffaele Geremia; Stéphane Richard; Claudio Sette
Sam68 is a KH-type RNA-binding protein involved in several steps of RNA metabolism with potential implications in cell differentiation and cancer. However, its physiological roles are still poorly understood. Herein, we show that Sam68−/− male mice are infertile and display several defects in spermatogenesis, demonstrating an essential role for Sam68 in male fertility. Sam68−/− mice produce few spermatozoa, which display dramatic motility defects and are unable to fertilize eggs. Expression of a subset of messenger mRNAs (mRNAs) is affected in the testis of knockout mice. Interestingly, Sam68 is associated with polyadenylated mRNAs in the cytoplasm during the meiotic divisions and in round spermatids, when it interacts with the translational machinery. We show that Sam68 is required for polysomal recruitment of specific mRNAs and for accumulation of the corresponding proteins in germ cells and in a heterologous system. These observations demonstrate a novel role for Sam68 in mRNA translation and highlight its essential requirement for the development of a functional male gamete.
Current Topics in Developmental Biology | 1978
Monesi; Raffaele Geremia; Angela D'Agostino; C. Boitani
Publisher Summary This chapter discusses a few aspects of ribonucleic acid (RNA) and protein synthesis at different stages of germ cell differentiation in mammals that are relevant to the problem of regulation of spermatogenesis. Spermatogenesis is a highly orderly process that begins with the stem cell and terminates with the release of the mature spermatid into the lumen of the seminiferous tubule. In the mouse, the total duration of spermatogenesis, from the stem cell to the mature spermatid, is about 34.5 days and is subdivided into three phases: (1) the period of multiplication and maturation of spermatogonia or mitotic phase of spermatogenesis that lasts about eight days, (2) meiosis that lasts 13 days, and (3) spermiogenesis, from the early spermatid to the release of the spermatozoon into the lumen, which is about 13.5 days long. Biochemistry of spermatogenesis is one of the most promising areas of research in developmental biology and mammalian reproduction. The development of germ cell is a field, where different experimental approaches, cytology, ultrastructure, cytogenetics, genetics, biochemistry, immunology, endocrinology, can interact in a coordinated view of cell differentiation. The results described provide clear evidence for gene expression during the haploid phase of spermatogenesis in the mouse; the transcriptional activity during early spermiogenesis involves both polyadenylated RNA and ribosomal RNA.
American Journal of Pathology | 2004
Donatella Farini; Innocenzo Sammarco; Giovanni Maturo; Giuseppe Vespasiani; Raffaele Geremia; Pellegrino Rossi; Claudio Sette
A truncated form of the c-Kit tyrosine kinase receptor, originally identified in mouse haploid germ cells, is aberrantly expressed in human cancer cell lines of various origin. This alternative transcript originates in the 15th intron of the human c-kit gene. We have previously demonstrated that sperm-carried mouse truncated c-Kit (tr-Kit) is a strong activator of the Src-family tyrosine kinases both in transfected cells and in mouse oocytes. In the present work, we report that human tr-Kit mRNA and protein are expressed in LNCaP prostatic cancer cells. We have identified two regions in the 15th and 16th introns of the human c-kit gene that show homology with sequences in the spermatid-specific tr-Kit promoter within the 16th intron of mouse c-kit. We also show that nuclear factors present in LNCaP cells bind to discrete sequences of the mouse tr-Kit promoter. Moreover, Western blot analysis of 23 primary prostate cancers indicated that tr-Kit was expressed in approximately 28% of the tumors at less advanced stages (Gleason grade 4 to 6) and in 66% of those at more advanced stages (Gleason grade 7 to 9), whereas it was not expressed in benign prostatic hypertrophies. Sequencing of the cDNA for the truncated c-Kit, amplified from both LNCaP cells and neoplastic tissues, confirmed the existence in prostate cancer cells of a transcript arising from the 15th intron of human c-kit. We also show that tr-Kit-expressing LNCaP cells and prostatic tumors have higher levels of phosphorylated/activated Src than tr-Kit-negative PC3 cells or prostatic tumors, and that transfection of tr-Kit in PC3 cells caused a dramatic increase in Src activity. Interestingly, we found that Sam68, a RNA-binding protein phosphorylated by Src in mitosis, is phosphorylated only in prostate tumors expressing tr-Kit. Indeed, both activation of Src and phosphorylation of Sam68 were observed in all of the three grade 7 to 9 tumors analyzed that expressed tr-Kit. Our data describe for the first time the existence of a truncated c-Kit protein in primary tumors and show a correlation between tr-Kit expression and activation of the Src pathway in the advanced stages of the disease. Thus, these results might pave the way for the elucidation of a novel pathway in neoplastic transformation of prostate cells.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Paola Grimaldi; Pierangelo Orlando; Sara Di Siena; Francesca Lolicato; Stefania Petrosino; Tiziana Bisogno; Raffaele Geremia; Luciano De Petrocellis; Vincenzo Di Marzo
The exact role of the endocannabinoid system (ECS) during spermatogenesis has not been clarified. We used purified germ cell fractions representative of all phases of spermatogenesis and primary cultures of spermatogonia. This approach allowed the precise quantification of the cannabinoid receptor ligands, anandamide and 2-arachidonoylglycerol, and of the expression at transcriptional and transductional levels of their metabolic enzymes and receptors. Our data indicate that male mouse germ cells possess an active and complete ECS, which is modulated during meiosis, and suggest the presence of an autocrine endocannabinoid signal during spermatogenesis. Mitotic cells possess higher levels of 2-arachidonoylglycerol, which decrease in spermatocytes and spermatids. Accordingly, spermatogonia express higher and lower levels of 2-arachidonoylglycerol biosynthetic and degrading enzymes, respectively, as compared to meiotic and postmeiotic cells. This endocannabinoid likely plays a pivotal role in promoting the meiotic progression of germ cells by activating CB2 receptors. In fact, we found that the selective CB2 receptor agonist, JWH133, induced the Erk 1/2 MAPK phosphorylation cascade in spermatogonia and their progression toward meiosis, because it increased the number of cells positive for SCP3, a marker of meiotic prophase, and the expression of early meiotic prophase genes.