Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Raffaele Ricco is active.

Publication


Featured researches published by Raffaele Ricco.


Nature Communications | 2015

Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules.

Kang Liang; Raffaele Ricco; Cara M. Doherty; Mark J. Styles; Stephen G. Bell; Nigel Kirby; Stephen T. Mudie; David N. Haylock; Anita J. Hill; Christian J. Doonan; Paolo Falcaro

Enhancing the robustness of functional biomacromolecules is a critical challenge in biotechnology, which if addressed would enhance their use in pharmaceuticals, chemical processing and biostorage. Here we report a novel method, inspired by natural biomineralization processes, which provides unprecedented protection of biomacromolecules by encapsulating them within a class of porous materials termed metal-organic frameworks. We show that proteins, enzymes and DNA rapidly induce the formation of protective metal-organic framework coatings under physiological conditions by concentrating the framework building blocks and facilitating crystallization around the biomacromolecules. The resulting biocomposite is stable under conditions that would normally decompose many biological macromolecules. For example, urease and horseradish peroxidase protected within a metal-organic framework shell are found to retain bioactivity after being treated at 80 °C and boiled in dimethylformamide (153 °C), respectively. This rapid, low-cost biomimetic mineralization process gives rise to new possibilities for the exploitation of biomacromolecules.


Nature Communications | 2011

A new method to position and functionalize metal-organic framework crystals

Paolo Falcaro; Anita J. Hill; Kate M. Nairn; Jacek J. Jasieniak; J. Mardel; Timothy J. Bastow; Sheridan C. Mayo; Michele Gimona; Daniel E. Gómez; Harold J. Whitfield; Raffaele Ricco; Alessandro Patelli; Benedetta Marmiroli; Heinz Amenitsch; Tobias Colson; Laura Villanova; Dario Buso

With controlled nanometre-sized pores and surface areas of thousands of square metres per gram, metal-organic frameworks (MOFs) may have an integral role in future catalysis, filtration and sensing applications. In general, for MOF-based device fabrication, well-organized or patterned MOF growth is required, and thus conventional synthetic routes are not suitable. Moreover, to expand their applicability, the introduction of additional functionality into MOFs is desirable. Here, we explore the use of nanostructured poly-hydrate zinc phosphate (α-hopeite) microparticles as nucleation seeds for MOFs that simultaneously address all these issues. Affording spatial control of nucleation and significantly accelerating MOF growth, these α-hopeite microparticles are found to act as nucleation agents both in solution and on solid surfaces. In addition, the introduction of functional nanoparticles (metallic, semiconducting, polymeric) into these nucleating seeds translates directly to the fabrication of functional MOFs suitable for molecular size-selective applications.


Journal of Materials Chemistry | 2013

Applications of magnetic metal–organic framework composites

Raffaele Ricco; Luca Malfatti; Masahide Takahashi; Anita J. Hill; Paolo Falcaro

The high and regular porosity of metal–organic frameworks (MOFs) provides exceptional properties suitable for technological applications. The increasing interest of the scientific community is based on the exploration of these advantageous properties for industrial applications. Pure MOFs are specifically designed to offer a huge surface area; such a high specific surface area has been explored and exploited for gas storage, separation, or catalysis in a variety of chemical processes. A different and promising scientific trend aims to combine MOFs with extrinsic functionalities such as functional nanoparticles; this strategy enables the preparation of new nanocomposite materials with unprecedented properties. An interesting case is offered by the synergic combination of magnetic particles with MOF crystals. In the resulting nanocomposite material, the adaptive functional responses can be triggered by an external magnetic field. In this context, different protocols have been developed for the efficient preparation of magnetic framework composites (MFCs), a class of materials that combines magnetic nano- or micro-particles with MOFs crystals. This application paper highlights the progress on MFCs for drug delivery, environmental control, catalysis, sensing and miniaturized device fabrication.


Advanced Materials | 2013

Combining UV Lithography and an Imprinting Technique for Patterning Metal‐Organic Frameworks

Cara M. Doherty; Gianluca Grenci; Raffaele Ricco; J. Mardel; Julien Reboul; Susumu Kitagawa; Anita J. Hill; Paolo Falcaro

Thin metal-organic framework (MOF) films are patterned using UV lithography and an imprinting technique. A UV lithographed SU-8 film is imprinted onto a film of MOF powder forming a 2D MOF patterned film. This straightforward method can be applied to most MOF materials, is versatile, cheap, and potentially useful for commercial applications such as lab-on-a-chip type devices.


Accounts of Chemical Research | 2017

Metal–Organic Frameworks at the Biointerface: Synthetic Strategies and Applications

Christian J. Doonan; Raffaele Ricco; Kang Liang; Darren Bradshaw; Paolo Falcaro

Many living organisms are capable of producing inorganic materials of precisely controlled structure and morphology. This ubiquitous process is termed biomineralization and is observed in nature from the macroscale (e.g., formation of exoskeletons) down to the nanoscale (e.g., mineral storage and transportation in proteins). Extensive research efforts have pursued replicating this chemistry with the overarching aims of synthesizing new materials of unprecedented physical properties and understanding the complex mechanisms that occur at the biological-inorganic interface. Recently, we demonstrated that a class of porous materials termed metal-organic frameworks (MOFs) can spontaneously form on protein-based hydrogels via a process analogous to natural matrix-mediated biomineralization. Subsequently, this strategy was extended to functional biomacromolecules, including proteins and DNA, which have been shown to seed and accelerate crystallization of MOFs. Alternative strategies exploit co-precipitating agents such as polymers to induce MOF particle formation thus facilitating protein encapsulation within the porous crystals. In these examples the rigid molecular architecture of the MOF was found to form a protective coating around the biomacromolecule offering improved stability to external environments that would normally lead to its degradation. In this way, the MOF shell mimics the protective function of a biomineralized exoskeleton. Other methodologies have also been explored to encapsulate enzymes within MOF structures, including the fabrication of polycrystalline hollow MOF microcapsules that preserve the original enzyme functionality over several batch reaction cycles. The potential to design MOFs of varied pore size and chemical functionality has underpinned studies describing the postsynthesis infiltration of enzymes into MOF pore networks and bioconjugation strategies for the decoration of the MOF outer surface, respectively. These methods and configurations allow for customized biocomposites. MOF biocomposites have been extended from simple proteins to complex biological systems including viruses, living yeast cells, and bacteria. Indeed, a noteworthy result was that cells encapsulated within a crystalline MOF shell remain viable after exposure to a medium containing lytic enzymes. Furthermore, the cells can adsorb nutrients (glucose) through the MOF shell but cease reproducing until the MOF casing is removed, at which point normal cellular activity is fully restored. The field of MOF biocomposites is expansive and rapidly developing toward different applied research fields including protection and delivery of biopharmaceuticals, biosensing, biocatalysis, biobanking, and cell and virus manipulation. This Account describes the current progress of MOFs toward biotechnological applications highlighting the different strategies for the preparation of biocomposites, the developmental milestones, the challenges, and the potential impact of MOFs to the field.


CrystEngComm | 2016

Emerging applications of metal–organic frameworks

Raffaele Ricco; Constance R. Pfeiffer; Kenji Sumida; Christopher J. Sumby; Paolo Falcaro; Neil R. Champness; Christian J. Doonan

Metal–organic frameworks are a unique class of materials well known for their crystallinity and ultra-high porosity. Since their first report over fifteen years ago, research in this area has sought to actively exploit these properties, especially in gas adsorption. In this article we canvass some emerging topics in the field of MOF research that show promise for new applications in areas such as biotechnology, catalysis, and microelectronics.


Advanced Materials | 2015

Biomimetic Replication of Microscopic Metal–Organic Framework Patterns Using Printed Protein Patterns

Kang Liang; Carlos Carbonell; Mark J. Styles; Raffaele Ricco; Jiwei Cui; Joseph J. Richardson; Daniel Maspoch; Frank Caruso; Paolo Falcaro

It is demonstrated that metal-organic frameworks (MOFs) can be replicated in a biomimetic fashion from protein patterns. Bendable, fluorescent MOF patterns are formed with micrometer resolution under ambient conditions. Furthermore, this technique is used to grow MOF patterns from fingerprint residue in 30 s with high fidelity. This technique is not only relevant for crime-scene investigation, but also for biomedical applications.


Journal of Materials Chemistry | 2015

Lead(II) uptake by aluminium based magnetic framework composites (MFCs) in water

Raffaele Ricco; Kristina Konstas; Mark J. Styles; Joseph J. Richardson; Ravinchandar Babarao; K. Suzuki; Paolo Scopece; Paolo Falcaro

The recent combination of Metal-Organic Frameworks (MOFs) and magnetic nanoparticles has shown their potential as a composite material in practical applications including drug delivery, catalysis and pollutant sequestration. Here, we report for the first time the preparation of a robust magnetic nanocomposite material based on an aluminium MOF (MIL-53) and iron oxide nanoparticles for the uptake of lead(II) ions. Different aminofunctionalized MIL-53 MOFs were prepared by increasing the 2-aminoterephthalic/terephthalic acid ratio. The composite materials were tested to determine the sequestration capability of heavy metals from various solvents (methanol, DMSO and water), pH (2, 7, 12) and a range of Pb(II) concentrations (10–8000 ppm). The magnetic composite based on MIL-53 showed remarkable capacity to sequester Pb(II) ions from water (up to 492.4 mg g−1 of composite), the highest recorded for a MOF sorbent system to date. While the MOF played a crucial role in the efficient heavy metal uptake, the magnetic nanoparticles allowed the prompt collection of the sorbent from solution. The triggered release of Pb(II) was investigated using an alternating magnetic field. The exceptional adsorption capacity and the response to the magnetic field make this class of innovative functional material a promising candidate for environmental remediation technologies.


Advanced Materials | 2016

Magnetic Metal–Organic Frameworks for Efficient Carbon Dioxide Capture and Remote Trigger Release

Haiqing Li; Muhammad Munir Sadiq; K. Suzuki; Raffaele Ricco; Christian Doblin; Anita J. Hill; Seng Lim; Paolo Falcaro; Matthew R. Hill

Magnetic metal-organic framework (MOF) composites show highly efficient CO2 desorption capacities upon their exposure to an alternating magnetic field, demonstrating a magnetic induction swing strategy for potentially low-energy regeneration of MOF adsorbents.


Biosensors and Bioelectronics | 2011

Signal enhancement in DNA microarray using dye doped silica nanoparticles: application to human papilloma virus (HPV) detection.

Raffaele Ricco; Anna Meneghello; Francesco Enrichi

DNA microarray is a powerful tool for the parallel of nucleic acids and other biologically significant molecules. In this communication we report an easy and cheap synthesis route for incorporating organic dyes into monodisperse inorganic silica nanoparticles and their application on the detection of carcinogenic risky Human Papilloma Virus using DNA microarray technology. We correlate our system with conventional direct dyes and commercial quantum dots, with a promising increase in optical signal, and a related decrease of the limit of detection, thus giving a remarkable improvement in this technique towards early diagnosis of diseases and trace level detection of dangerous biological contaminants.

Collaboration


Dive into the Raffaele Ricco's collaboration.

Top Co-Authors

Avatar

Paolo Falcaro

Graz University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anita J. Hill

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Mark J. Styles

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Kang Liang

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Enrichi

Luleå University of Technology

View shared research outputs
Top Co-Authors

Avatar

Cara M. Doherty

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Pietro Riello

Ca' Foscari University of Venice

View shared research outputs
Top Co-Authors

Avatar

Masahide Takahashi

Osaka Prefecture University

View shared research outputs
Top Co-Authors

Avatar

Frank Caruso

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge